Citation: | LI Kang, LIU Na, LI Shouxian, ZHAO Duo. Theoretical and numerical studies on the scale effects for strong explosion fireball thermal radiation characteristics[J]. Explosion And Shock Waves, 2024, 44(10): 102101. doi: 10.11883/bzycj-2023-0199 |
[1] |
张守中. 爆炸与冲击动力学 [M]. 北京: 兵器工业出版社, 1993.
|
[2] |
DRAKE R P. 高能量密度物理——基础、惯性约束聚变和实验天体物理学 [M]. 孙承纬, 译. 北京: 国防工业出版社, 2013.
DRAKE R P. High-energy-density physics: fundamentals, inertial fusion, and experimental astrophysics [M]. Translated by SUN C W. Beijing: National Defense Industry Press, 2013.
|
[3] |
乔登江. 核爆炸物理概论 [M]. 北京: 国防工业出版社, 2003.
|
[4] |
ZHANG J, PEI W B. Similarity transformations of radiation hydrodynamic equations and investigation on laws of radiative conduction [J]. Physics of Fluids B: Plasma Physics, 1992, 4(4): 872–876. DOI: 10.1063/1.860241.
|
[5] |
FOURNIER K B, BROWN JR C G, MAY M J, et al. A geophysical shock and air blast simulator at the National Ignition Facility [J]. Review of Scientific Instruments, 2014, 85(9): 095119. DOI: 10.1063/1.4896119.
|
[6] |
BOUQUET S, FALIZE E, MICHAUT C, et al. From lasers to the universe: scaling laws in laboratory astrophysics [J]. High Energy Density Physics, 2010, 6(4): 368–380. DOI: 10.1016/j.hedp.2010.03.001.
|
[7] |
KOENIG M, VINCI T, BENUZZI-MOUNAIX A, et al. Radiative shocks: an opportunity to study laboratory astrophysics [J]. Physics of Plasmas, 2006, 13(5): 056504. DOI: 10.1063/1.2177637.
|
[8] |
VINCI T, KOENIG M, BENUZZI-MOUNAIX A, et al. Temperature and electron density measurements on laser driven radiative shocks [J]. Physics of Plasmas, 2006, 13(1): 010702. DOI: 10.1063/1.2162804.
|
[9] |
赵多, 李守先, 安建祝, 等. 氙气中辐射激波的发光特性 [J]. 物理学报, 2021, 70(7): 075201. DOI: 10.7498/aps.70.20200944.
ZHAO D, LI S X, AN J Z, et al. Radiation properties of radiative shock in xenon [J]. Acta Physica Sinica, 2021, 70(7): 075201. DOI: 10.7498/aps.70.20200944.
|
[10] |
孙景文. 高空核爆炸和美苏高空核试验的述评 [J]. 中国核科技报告, 1999(1): 966–985.
SUN J W. A brief introduction to high altitude nuclear explosion and a review on high altitude nuclear tests of USA and former USSR [J]. China Nuclear Science and Technology Report, 1999(1): 966–985.
|
[11] |
BRODE H L. Fireball phenomenology: P-3026 [R]. The RAND Corporation, 1964.
|
[12] |
BRODE H L. Review of nuclear weapons effects [J]. Annual Review of Nuclear and Particle Science, 1968, 18: 153–202. DOI: 10.1146/annurev.ns.18.120168.001101.
|
[13] |
SVETTSOV V V. Explosions in the lower and middle atmosphere: the spherically symmetrical stage [J]. Combustion, Explosion and Shock Waves, 1994, 30(5): 696–707. DOI: 10.1007/BF00755841.
|
[14] |
田宙, 乔登江, 郭永辉. 不同高度强爆炸早期火球数值研究 [J]. 兵工学报, 2009, 30(8): 1078–1083. DOI: 10.3321/j.issn:1000-1093.2009.08.014.
TIAN Z, QIAO D J, GUO Y H. Numerical investigation of early fireball of strong explosion for different altitudes [J]. Acta Armamentarii, 2009, 30(8): 1078–1083. DOI: 10.3321/j.issn:1000-1093.2009.08.014.
|
[15] |
田宙, 郭永辉, 乔登江. 高空强爆炸早期火球参量分布的数值研究 [J]. 空气动力学学报, 2010, 28(3): 336–340. DOI: 10.3969/j.issn.0258-1825.2010.03.018.
TIAN Z, GUO Y H, QIAO D J. Numerical investigation of early fireball parameters distribution of high-altitude strong explosion [J]. Acta Aerodynamica Sinica, 2010, 28(3): 336–340. DOI: 10.3969/j.issn.0258-1825.2010.03.018.
|
[16] |
ZINN J. A finite difference scheme for time-dependent spherical radiation hydrodynamics problems [J]. Journal of Computational Physics, 1973, 13(4): 569–590. DOI: 10.1016/0021-9991(73)90034-X.
|
[17] |
JOHNSEN E, COLONIUS T. Implementation of WENO schemes in compressible multicomponent flow problems [J]. Journal of Computational Physics, 2006, 219(2): 715–732. DOI: 10.1016/j.jcp.2006.04.018.
|
[18] |
李康, 李守先, 刘娜. 强爆炸火球辐射流体自适应网格高精度数值模拟 [J]. 计算物理, 2021, 38(2): 146–152. DOI: 10.19596/j.cnki.1001-246x.8230.
LI K, LI S X, LIU N. High-precision numerical simulation of strong explosion fireball with adaptive mesh [J]. Chinese Journal of Computational Physics, 2021, 38(2): 146–152. DOI: 10.19596/j.cnki.1001-246x.8230.
|
[19] |
BRODE H L, ASANO W, PLEMMONS H M, et al. A program for calculating radiation flow and hydrodynamic motion: RM-5187-PR [R]. The RAND Corporation, 1967.
|
[20] |
SYMBALISTY E M D, ZINN J, WHITAKER R W. RADFLO physics and algorithms [R]. Los Alamos: Los Alamos National Laboratory, 1995.
|
[21] |
ZINN J, SUTHERLAND C D. Special numerics for a nuclear-fireball model [R]. Los Alamos: Los Alamos National Laboratory, 1982.
|
[22] |
FALIZE É, MICHAUT C, BOUQUET S. Similarity properties and scaling laws of radiation hydrodynamic flows in laboratory astrophysics [J]. The Astrophysical Journal, 2011, 730(2): 96. DOI: 10.1088/0004-637X/730/2/96.
|
[23] |
乔登江. 核爆炸火球物理 [J]. 物理学进展, 1983, 3(2): 236–267. DOI: 10.3321/j.issn:1000-0542.1983.02.004.
QIAO D J. The physics of fireballs [J]. Progress in Physics, 1983, 3(2): 236–267. DOI: 10.3321/j.issn:1000-0542.1983.02.004.
|
[24] |
王坚, 李路翔. 核武器效应及防护 [M]. 北京: 北京理工大学出版社, 1993.
|
[1] | GAO Shiqing, ZOU Liyong, TANG Jiupeng, LI Ji, LIN Jianyu. Numerical simulation of single-mode Richtmyer-Meshkov instability caused by high-Mach number shock wave[J]. Explosion And Shock Waves, 2024, 44(7): 073201. doi: 10.11883/bzycj-2023-0458 |
[2] | SUN Chengwei, LU Yu, ZHAO Jibo, LUO Binqiang, GU Zhuowei, WANG Guiji, ZHANG Xuping, CHEN Xuemiao, ZHOU Zhongyu, LI Mu, YUAN Hong, ZHANG Hongping, WANG Ganghua, SUN Qizhi, WEN Shanggang, TAN Fuli, ZHAO Jianheng, MO Jianjun, CAI Jintao, JIN Yunsheng, HE Jia, CHONG Tao, ZHAO Xiaoming, LIU Cangli. SSS-MHD: a one-dimensional magneto-hydrodynamics multi-physics simulation platform for magnetically-driven high-energy-density dynamics experiments[J]. Explosion And Shock Waves, 2023, 43(10): 104201. doi: 10.11883/bzycj-2023-0127 |
[3] | ZHANG Yunzhen, CHENG Miao, RONG Guangyao, WANG Jianping. Numerical investigation on formation mechanism of low-frequency detonation instability[J]. Explosion And Shock Waves, 2021, 41(9): 092101. doi: 10.11883/bzycj-2020-0239 |
[4] | WANG Tao, WANG Bing, LIN Jianyu, ZHONG Min, BAI Jingsong, LI Ping, TAO Gang. Numerical investigations of the interface instabilities of metallic material under implosion in cylindrical convergent geometry[J]. Explosion And Shock Waves, 2020, 40(5): 052201. doi: 10.11883/bzycj-2019-0150 |
[5] | LI Yanchao, BI Mingshu, ZHANG Dawei, GAO Wei. Effects of diffusive-thermal instability and hydrodynamic instability on cellular flame during hydrogen/air explosion[J]. Explosion And Shock Waves, 2018, 38(5): 1064-1070. doi: 10.11883/bzycj-2017-0069 |
[6] | Hao Pengcheng, Feng Qijing, Hu Xiaomian. A numerical study of the instability of the metal shell in the implosion[J]. Explosion And Shock Waves, 2016, 36(6): 739-744. doi: 10.11883/1001-1455(2016)06-0739-06 |
[7] | Yang Min, Wang Li-li, Zhou Hai-bing, Zhang Shu-dao. Study on mixing induced by Richtmyer-Meshkov instability by using buoyancy-drag model[J]. Explosion And Shock Waves, 2015, 35(3): 423-427. doi: 10.11883/1001-1455(2015)03-0423-05 |
[8] | LIU Jin-hong, ZOU Li-yong, BAI Jing-song, TAN Duo-wang, HUANG Wen-bin, GUO Wen-can. Richtmyer-Meshkovinstabilityofshock-acceleratedair/SF6interfaces[J]. Explosion And Shock Waves, 2011, 31(2): 135-140. doi: 10.11883/1001-1455(2011)02-0135-06 |
[9] | BAI Jin-Song, WANG Tao, ZOU Li-Yong, LI Ping. Large eddy simulation for the multi-viscosity-fluid and turbulence[J]. Explosion And Shock Waves, 2010, 30(3): 262-268. doi: 10.11883/1001-1455(2010)03-0262-07 |
[10] | LIU Jin-hong, TAN Duo-wang, ZHANG Xu, ZOU Li-yong, HUANG Wen-bin. Numerical simulation of instability of two-dimensional convergent shock wave propagating in gas[J]. Explosion And Shock Waves, 2009, 29(6): 601-606. doi: 10.11883/1001-1455(2009)06-0601-06 |
[11] | OU-YANG Liang-chen, MA Dong-jun, SUN De-jun, YIN Xie-yuan. High-amplitude single-mode perturbation evolution of Richtmyer-Meshkov instability[J]. Explosion And Shock Waves, 2008, 28(5): 407-414. doi: 10.11883/1001-1455(2008)05-0407-08 |
[12] | ZHANG Xue-ying, ZHAO Ning, ZHU Jun. The conservative and non-conservative algorithms applied to numerical studies of the interface instability in multi-component fluids[J]. Explosion And Shock Waves, 2006, 26(1): 65-70. doi: 10.11883/1001-1455(2006)01-0065-06 |
1. | 杨石刚,蔡炯炜,杨亚,孙文盛,门敬敏. 城市地下浅埋管沟可燃气体爆炸的灾害效应(Ⅱ):影响因素分析及后果评估. 爆炸与冲击. 2023(01): 157-168 . ![]() | |
2. | 杨峰,翟红波,苏健军,李尚青,肖洋,刘伟. 浅埋爆炸空气冲击波峰值压力计算方法研究. 火工品. 2023(01): 42-45 . ![]() |