Xiang Mei, Huang Yi-min, Rao Guo-ning, Peng Jin-hua. Cook-off test and numerical simulation for composite charge at different heating rates[J]. Explosion And Shock Waves, 2013, 33(4): 394-400. doi: 10.11883/1001-1455(2013)04-0394-07
Citation: SUN Pengchang, YANG Guangdong, LU Wenbo, FAN Yong, MENG Haili, XUE Li. A study on explosive load history of rock blasting considering rock failure zones[J]. Explosion And Shock Waves, 2024, 44(3): 035201. doi: 10.11883/bzycj-2023-0206

A study on explosive load history of rock blasting considering rock failure zones

doi: 10.11883/bzycj-2023-0206
  • Received Date: 2023-06-07
  • Rev Recd Date: 2024-01-16
  • Available Online: 2024-01-17
  • Publish Date: 2024-03-14
  • Due to the deficiency that dynamic processes of rock blasting and rock failure zones around a blasthole are not simultaneously considered, the explosion load history of rock blasting considering rock failure zones and its reliability were investigated. Combining theoretical solutions of the dynamic processes of rock blasting and the rock failure zones around a blasthole, a theoretical formula of the explosive load history considering rock failure zones was derived, and a comparison was made between the derived explosive load history and a measured explosion pressure curve inside a blasthole. Both the field test on an ideal site and the numerical simulation including three explosion load conditions of single hole blasting were carried out, and the field and numerical results of blasting vibration were compared. The results show that the explosive load history considering rock failure zones consists of an ascending stage and three attenuation stages Ⅰ, Ⅱ, and Ⅲ, among which the ascending stage lasts for an extremely short time, while the attenuation stages last for a long time and are controlled by the stemming conditions. The change tendency of the calculated explosive load history considering rock failure zones is consistent with that of the measured explosion pressure curve, indicating the reliability of the explosive load history considering rock failure zones. The numerical results of single hole blasting vibration waveforms under the theoretical explosive load condition are consistent with the filed results, and the deviation ratios between the calculated peak particle velocity (PPV) results under the theoretical explosive load condition and the field PPV results are the smallest, most of which are within 7%, indicting the explosive load history considering rock failure zones has strong reliability. The explosive load history considering rock failure zones can be adjusted as the rock blasting system changes, and it has wide adaptability and good application potentials. The research results may help provide a theoretical basis for realizing efficient and accurate calculation about rock blasting.
  • [1]
    汪旭光. 中国工程爆破与爆破器材的现状及展望 [J]. 工程爆破, 2007, 13(4): 1–8. DOI: 10.3969/j.issn.1006-7051.2007.04.001.

    WANG X G. Current status and future prospect of engineering blasting and explosive materials in China [J]. Engineering Blasting, 2007, 13(4): 1–8. DOI: 10.3969/j.issn.1006-7051.2007.04.001.
    [2]
    WANG M L, LI X, LI Q H, et al. Study on blasting technology for open-pit layering of complex mine adjacent to high and steep slope [J]. Frontiers in Earth Science, 2021, 9: 773872. DOI: 10.3389/feart.2021.773872.
    [3]
    王志亮, 毕程程, 李鸿儒. 混凝土爆破损伤的SPH-FEM耦合法数值模拟 [J]. 爆炸与冲击, 2018, 38(6): 1419–1428. DOI: 10.11883/bzycj-2017-0209.

    WANG Z L, BI C C, LI H R. Numerical simulation of blasting damage in concrete using a coupled SPH-FEM algorithm [J]. Explosion and Shock Waves, 2018, 38(6): 1419–1428. DOI: 10.11883/bzycj-2017-0209.
    [4]
    杨建华, 代金豪, 姚池, 等. 爆破开挖扰动下锚固节理岩质边坡位移突变特征与能量机理 [J]. 爆炸与冲击, 2022, 42(3): 035201. DOI: 10.11883/bzycj-2021-0126.

    YANG J H, DAI J H, YAO C, et al. Displacement mutation characteristics and energy mechanisms of anchored jointed rock slopes under blasting excavation disturbance [J]. Explosion and Shock Waves, 2022, 42(3): 035201. DOI: 10.11883/bzycj-2021-0126.
    [5]
    HUSTRULID W. Blasting principles for open pit mining: theoretical foundations [M]. Rotterdam: Balkema, 1999: 992.
    [6]
    孙鹏昌. 基于模态分析的岩石高边坡爆破振动影响评价 [D]. 武汉: 武汉大学, 2021: 47–60.

    SUN P C. Impact evaluation of blasting vibration on high rock slope based on modal analysis [D]. Wuhan: Wuhan University, 2021: 47–60.
    [7]
    CASTEDO R, NATALE M, LÓPEZ L M, et al. Estimation of Jones-Wilkins-Lee parameters of emulsion explosives using cylinder tests and their numerical validation [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 290–301. DOI: 10.1016/j.ijrmms.2018.10.027.
    [8]
    KUZMENKO A A, VOROBEV V D, DENISYUK I I, et al. Seismic effects of blasting in rock [M]. Rotterdam: A. A. Balkema, 1993: 35–37.
    [9]
    王文龙. 钻眼爆破 [M]. 北京: 煤炭工业出版社, 1984: 178–179.

    WANG W L. Drilling and blasting [M]. Beijing: China Coal Industry Publishing House, 1984: 178–179.
    [10]
    SHARPE J A. The production of elastic waves by explosion pressures: I. theory and empirical field observations [J]. Geophysics, 1942, 7(2): 144–154. DOI: 10.1190/1.1445002.
    [11]
    DUVALL W I. Strain-wave shapes in rock near explosions [J]. Geophysics, 1953, 18(2): 310–323. DOI: 10.1190/1.1437875.
    [12]
    CHO S H, MIYAKE H, KIMURA T, et al. Effect of the waveform of applied pressure on rock fracture process in one free-face [J]. Science and Technology of Energetic Materials, 2003, 64(3): 116–125.
    [13]
    CHO S H, KANEKO K. Influence of the applied pressure waveform on the dynamic fracture processes in rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 771–784. DOI: 10.1016/j.ijrmms.2004.02.006.
    [14]
    STARFIELD A M, PUGLIESE J M. Compression waves generated in rock by cylindrical explosive charges: a comparison between a computer model and field measurements [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1968, 5(1): 65–77. DOI: 10.1016/0148-9062(68)90023-5.
    [15]
    JONG Y, LEE C, JEON S, et al. Numerical modeling of the circular-cut using particle flaw code [C]//Proceedings of the 31st Annual Conference on Explosives and Blasting Technique. Orlando, 2005: 289–298.
    [16]
    BLAIR D, MINCHINTON A. On the damage zone surrounding a single blasthole [J]. Fragblast, 1997, 1(1): 59–72. DOI: 10.1080/13855149709408390.
    [17]
    BLAIR D P. A comparison of Heelan and exact solutions for seismic radiation from a short cylindrical charge [J]. Geophysics, 2007, 72(2): E33–E41. DOI: 10.1190/1.2424543.
    [18]
    CHO S H, KANEKO K. Rock fragmentation control in blasting [J]. Materials Transactions, 2004, 45(5): 1722–1730. DOI: 10.2320/matertrans.45.1722.
    [19]
    TRIVIÑO L F, MOHANTY B, MUNJIZA A. Seismic radiation patterns from cylindrical explosive charges by analytical and combined finite-discrete element methods [C]//Proceedings of the 9th International Symposium on Rock Fragmentation by Blasting. Boca Raton, FL, USA: CRC Press, 2009: 415–426.
    [20]
    陶振宇, 董振华, 卢文波. 敞口炮孔压力变化历程的理论分析与计算 [J]. 武汉水利电力大学学报, 1994, 27(4): 394–399.

    TAO Z Y, DONG Z H, LU W B. A theoretical analysis and calculation of the pressure course of unstemmed borehole [J]. Journal of Wuhan University of Hydraulic and Electric Engineering, 1994, 27(4): 394–399.
    [21]
    卢文波, 陶振宇. 爆生气体驱动的裂纹扩展速度研究 [J]. 爆炸与冲击, 1994, 14(3): 264–268.

    LU W B, TAO Z Y. A study of fracture propagation velocity driven by gases of explosion products [J]. Explosion and Shock Waves, 1994, 14(3): 264–268.
    [22]
    卢文波. 岩石爆破中应力波的传播及其效应研究 [D]. 武汉: 武汉水利电力大学, 1994: 15–24.

    LU W B. Propagation and effect of stress wave in rock blasting [D] Wuhan: Wuhan University of Hydraulic and Electric Engineering, 1994: 15–24.
    [23]
    LU W B, YANG J H, CHEN M, et al. An equivalent method for blasting vibration simulation [J]. Simulation Modelling Practice and Theory, 2011, 19(9): 2050–2062. DOI: 10.1016/j.simpat.2011.05.012.
    [24]
    杨建华, 卢文波, 陈明, 等. 岩石爆破开挖诱发振动的等效模拟方法 [J]. 爆炸与冲击, 2012, 32(2): 157–163. DOI: 10.11883/1001-1455(2012)02-0157-07.

    YANG J H, LU W B, CHEN M, et al. An equivalent simulation method for blasting vibration of surrounding rock [J]. Explosion and Shock Waves, 2012, 32(2): 157–163. DOI: 10.11883/1001-1455(2012)02-0157-07.
    [25]
    卢文波, 杨建华, 陈明, 等. 深埋隧洞岩体开挖瞬态卸荷机制及等效数值模拟 [J]. 岩石力学与工程学报, 2011, 30(6): 1089–1096.

    LU W B, YANG J H, CHEN M, et al. Mechanism and equivalent numerical simulation of transient release of excavation load for deep tunnel [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1089–1096.
    [26]
    李庆文, 乔兰, 陈璐. 基于精确爆破载荷分析的安全距离判据 [J]. 工程力学, 2015, 32(10): 123–129. DOI: 10.6052/j.issn.1000-4750.2014.03.0248.

    LI Q W, QIAO L, CHEN L. Based on the accurate blasting loading to estimate the safety criterion [J]. Engineering Mechanics, 2015, 32(10): 123–129. DOI: 10.6052/j.issn.1000-4750.2014.03.0248.
    [27]
    钱七虎. 岩石爆炸动力学的若干进展 [J]. 岩石力学与工程学报, 2009, 28(10): 1945–1968. DOI: 10.3321/j.issn:1000-6915.2009.10.001.

    QIAN Q H. Some advances in rock blasting dynamics [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 1945–1968. DOI: 10.3321/j.issn:1000-6915.2009.10.001.
    [28]
    陈士海, 王明洋, 赵跃堂, 等. 岩石爆破破坏界面上的应力时程研究 [J]. 岩石力学与工程学报, 2003, 22(11): 1784–1788. DOI: 10.3321/j.issn:1000-6915.2003.11.006.

    CHEN S H, WANG M Y, ZHAO Y T, et al. Time-stress history on interface between cracked and uncracked zones under rock blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1784–1788. DOI: 10.3321/j.issn:1000-6915.2003.11.006.
    [29]
    CHAPMAN D L, OXON A B. VI. On the rate of explosion in gases [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1899, 47(284): 90–104. DOI: 10.1080/14786449908621243.
    [30]
    JOUGUET E. On the propagation of chemical reactions in gases [J]. Journal de Mathématiques Pures et Appliquées, 1905, 1: 347–425.
    [31]
    HENRYCH J. The dynamics of explosion and its use: developments in civil engineering [M]. Amsterdam: Elsevier, 1979: 59–64.
    [32]
    Л. Д. 朗道, E. M. 栗弗席兹. 连续介质力学(第二册) [M]. 彭旭麟, 译. 北京: 人民教育出版社, 1960: 500–509.
    [33]
    WANG L L. Foundations of stress waves [M]. Oxford: Elsevier, 2007: 337–347.
    [34]
    李世愚, 和泰名, 尹祥础. 岩石断裂力学 [M]. 北京: 科学出版社, 2015: 23–25.

    LI S Y, HE T M, YIN X C. Rock fracture mechanics [M]. Beijing: Science Press, 2015: 23–25.
    [35]
    冷振东, 卢文波, 陈明, 等. 岩石钻孔爆破粉碎区计算模型的改进 [J]. 爆炸与冲击, 2015, 35(1): 101–107. DOI: 10.11883/1001-1455(2015)01-0101-07.

    LENG Z D, LU W B, CHEN M, et al. Improved calculation model for the size of crushed zone around blasthole [J]. Explosion and Shock Waves, 2015, 35(1): 101–107. DOI: 10.11883/1001-1455(2015)01-0101-07.
    [36]
    LU W B, LENG Z D, CHEN M, et al. A modified model to calculate the size of the crushed zone around a blast-hole [J]. Journal of the Southern African Institute of Mining and Metallurgy, 2016, 116(5): 413–422. DOI: 10.17159/2411-9717/2016/v116n5a7.
    [37]
    RAKISHEV B, RAKISHEVA Z B. Basic characteristics of the stages of rock massif destruction by explosive crushing [C]//Proceedings of the 3rd Asia-Pacific Symposium on Blasting Techniques. Kunming, 2011: 65–69.
    [38]
    MENCACCI S, CHAVEZ R. The measurement and analysis of detonation pressure during blasting [C]//Proceedings of 2005 European Federation of Explosives Engineers. Brighton, 2005: 231–237.
    [39]
    SUN P C, LU W B, ZHOU J R, et al. Comparison of dominant frequency attenuation of blasting vibration for different charge structures [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(2): 448–459. DOI: 10.1016/j.jrmge.2021.07.002.
    [40]
    SINGH P K, ROY M P. Damage to surface structures due to blast vibration [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(6): 949–961. DOI: 10.1016/j.ijrmms.2010.06.010.
    [41]
    LANGEFORS U, KIHLSTRÖM B. The modern technique of rock blasting [M]. 3rd ed. New York: Wiley, 1979: 28–56.
  • Relative Articles

    [1]ZHU Jianlei, HAN Lei, FANG Zhanxiang, XU Yuxin. Calculation method for quasi-static pressure of annular composite implosion of active materials and explosives[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0218
    [2]ZHANG Xuerui, ZHOU Tao. Energy release characteristics of composite charge in confined space[J]. Explosion And Shock Waves, 2024, 44(6): 062302. doi: 10.11883/bzycj-2023-0381
    [3]SHEN Fei, WANG Hui, WANG Jintao, YU Wenli, WANG Xuanjun. Detonation driving energy release characteristics of laminated composite charge of DNTF-based aluminized explosivesbased on cylinder tests[J]. Explosion And Shock Waves, 2023, 43(11): 112301. doi: 10.11883/bzycj-2023-0085
    [4]XIAO Youcai, WANG Ruisheng, FAN Chenyang, ZHANG Hong, WANG Zhijun, SUN Yi. Cook-off experiment on the JH-14C booster explosive with a shell and the relevant numerical simulation[J]. Explosion And Shock Waves, 2023, 43(7): 072301. doi: 10.11883/bzycj-2022-0555
    [5]LI Peng, LI Gang, YUAN Baohui, ZHOU Tao, JING Yidong. Influence of rotation on damage power of an explosively-formed rod-like penetrator[J]. Explosion And Shock Waves, 2018, 38(3): 616-621. doi: 10.11883/bzycj-2016-0263
    [6]LI Mei, JIANG Jianwei, WANG Xin. Shock wave propagation characteristics of double layer charge explosion in the air[J]. Explosion And Shock Waves, 2018, 38(2): 367-372. doi: 10.11883/bzycj-2016-0209
    [7]YangLi, WangYu, WangBin, HuangChao. Experimentalinvestigationonloadingcharacteristics ofunderwaterexplosionfromabottomcharge[J]. Explosion And Shock Waves, 2013, 33(2): 175-180. doi: 10.11883/1001-1455(2013)02-0175-06
    [8]ZhiXiao-qi, HuShuang-qi. Influencesofchargedensitiesonresponses ofexplosivestoslowcook-off[J]. Explosion And Shock Waves, 2013, 33(2): 221-224. doi: 10.11883/1001-1455(2013)02-0221-04
    [9]ZhouJie, TaoGang, PanBao-qing, ZhangHong-we. Mechanismofblasttraumatohumanthorax:Afiniteelementstudy[J]. Explosion And Shock Waves, 2013, 33(3): 315-321. doi: 10.11883/1001-1455(2013)03-0315-06
    [10]ZhengYu-xuan, ZhouFeng-hua, HuShi-sheng. Effectsofperiodically-distributeddefectsonductilefragmentationprocess ofmaterialsunderhighstrain-ratetension[J]. Explosion And Shock Waves, 2013, 33(2): 113-119. doi: 10.11883/1001-1455(2013)02-0113-07
    [11]ZHANG Yue-ju, YANG Xu-sheng, LI Xiao-jie, WANG Yong, YAO Zheng, XIAO Hui, ZHAO En-jun. Anexperimentalresearchonexplosiveweldingoftitanium/steelcladplate[J]. Explosion And Shock Waves, 2012, 32(1): 103-107. doi: 10.11883/1001-1455(2012)01-0103-05
    [12]XIAO Yi-hua, HU De-an, HAN Xu, YANG Gang. AnadaptiveaxisymmetricFEM-SPHcouplingalgorithmand itsapplicationtohighvelocityimpactsimulation[J]. Explosion And Shock Waves, 2012, 32(4): 384-392. doi: 10.11883/1001-1455(2012)04-0384-09
    [13]CAO Li-na, HAN Xiu-qing, ZHANG Yong-guang, CAO Yu-xin. Finiteelementanalysisofdetonationwaveinterference amongperforatingbullet[J]. Explosion And Shock Waves, 2011, 31(2): 220-224. doi: 10.11883/1001-1455(2011)02-0220-05
    [14]CHEN Er-yun, MA Da-wei, LE Gui-gao, ZHAO Gai-ping, ZHU Sun-ke. Diffraction, reflection and focusing of toroidal shock waves[J]. Explosion And Shock Waves, 2009, 29(2): 177-181. doi: 10.11883/1001-1455(2009)02-0177-05
    [15]FENG Xiao-jun, WANG Xiao-feng. Influences of charge porosity on cook-off response of explosive[J]. Explosion And Shock Waves, 2009, 29(1): 109-112. doi: 10.11883/1001-1455(2009)01-0109-04
    [16]LI Zhi-qiang, LIU Xiao-ming, ZHAO Yong-gang, ZHAO Long-mao. Experimental study and finite element analysis of linear cutting aerial PMMA using micro detonation cord[J]. Explosion And Shock Waves, 2007, 27(5): 385-389. doi: 10.11883/1001-1455(2007)05-0385-05
    [17]REN Bo, WANG Cheng. Parallel impact/penetration finite element method simulation techniques[J]. Explosion And Shock Waves, 2005, 25(3): 260-264. doi: 10.11883/1001-1455(2005)03-0260-05
    [18]FENG Xiao-jun, WANG Xiao-feng, HAN Zhu-long. The study of charging size influence on the response of explosives in slow cook-off test[J]. Explosion And Shock Waves, 2005, 25(3): 285-288. doi: 10.11883/1001-1455(2005)03-0285-04
    [19]LI Hai-wang, QIN Dong-qi. Study of the effect of loading modes and areas on anomalous response of elastic-plastic plates[J]. Explosion And Shock Waves, 2005, 25(1): 35-40. doi: 10.11883/1001-1455(2005)01-0035-06
  • Cited by

    Periodical cited type(23)

    1. 赵越宸,庞维强,苏昌银,龙杰才,郑荣耀,李锡文. 复合固体推进剂混合工艺参数推算方法. 固体火箭技术. 2024(06): 851-858 .
    2. 沈飞,王辉,王金涛,余文力,王煊军. 基于圆筒试验的DNTF基叠层复合装药的爆轰驱动释能特性. 爆炸与冲击. 2023(11): 58-66 . 本站查看
    3. 李昂,钱江,褚恩义,韩克华,朱朋,沈瑞琪. 爆炸箔起爆器热烤试验与数值模拟研究. 火工品. 2023(06): 33-38 .
    4. 肖游,智小琦,王琦,范兴华. 多种复合炸药装药的慢烤特性及其机理. 高压物理学报. 2022(02): 166-175 .
    5. 叶青,余永刚. 含能材料热安全性研究进展. 装备环境工程. 2022(03): 1-10 .
    6. 刘静,赵非玉. 不同升温速率下模块装药的烤燃特性分析. 装备环境工程. 2022(03): 11-16 .
    7. 方远德,姜春兰,毛亮,王在成,王新宇,卢士伟. 聚能装药战斗部烤燃响应的数值模拟研究. 兵器装备工程学报. 2022(07): 121-127 .
    8. 王茂,韩志伟,李亚宁,李宏伟,陈坤,王伯良. 基于虚拟仪器的慢速烤燃系统的设计及应用. 爆破器材. 2020(03): 37-42 .
    9. 刘子德,智小琦,周捷,王帅. 药量和升温速率对DNAN基熔铸炸药烤燃特性的影响. 爆炸与冲击. 2019(01): 20-24 . 本站查看
    10. 蒋超,闻泉,王雨时,张志彪,王光宇. 不敏感弹药烤燃试验技术综述. 探测与控制学报. 2019(02): 1-9 .
    11. 王新颖,卢熹. 温升对水雷主装药安全性影响的数值模拟. 科学技术与工程. 2019(15): 125-129 .
    12. 屈可朋,李亮亮,肖玮. 高低温循环及对称冲击耦合加载下炸药的安全性研究. 爆破器材. 2019(04): 43-46+53 .
    13. 徐洪涛,金朋刚. 炸药缓慢加热条件实验技术进展. 装备环境工程. 2019(09): 5-17 .
    14. 常天笑,闻泉,王雨时,王光宇,蒋超,闫丽. 引信内部装药对烤燃试验响应的影响. 探测与控制学报. 2019(05): 17-24 .
    15. 邓海,沈飞,梁争峰,王辉. 不同约束条件下B炸药的慢烤响应特性. 火炸药学报. 2018(05): 465-470 .
    16. 刘子德,智小琦. DNAN熔铸混合炸药的慢烤试验与模拟. 兵器装备工程学报. 2018(12): 178-181 .
    17. 袁俊明,张林炎,唐鑫,刘玉存,张喜亮,陈银刚,李硕. 小型传爆装置慢燃实验及数值计算. 兵工学报. 2017(08): 1541-1546 .
    18. 李文凤,余永刚,叶锐,杨后文. 不同升温速率下AP/HTPB底排装置慢速烤燃的数值模拟. 爆炸与冲击. 2017(01): 46-52 . 本站查看
    19. 杨筱,智小琦. 炸药烤燃特性的隔热层效应研究. 科学技术与工程. 2016(35): 198-202 .
    20. 吴世永,王伟力,苗润,吕鹏博,刘晓夏. 不同尺寸装药烤燃特性的数值模拟研究. 中国测试. 2016(10): 85-89 .
    21. 姚奎光,钟敏,代晓淦,吕子剑. 缓慢热作用下PBX-9炸药的响应特性. 火炸药学报. 2015(06): 56-60 .
    22. 陈科全,黄亨建,路中华,蒋治海,聂少云,陈红霞. 一种弹体排气缓释结构设计方法与试验研究. 弹箭与制导学报. 2015(04): 15-18 .
    23. 杨后文,余永刚,叶锐. AP/HTPB复合固体推进剂慢烤燃特性的数值模拟. 含能材料. 2015(10): 924-929 .

    Other cited types(18)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(7)

    Article Metrics

    Article views (251) PDF downloads(88) Cited by(41)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return