Volume 44 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
SONG Fuchen, GUO Hui, CHEN Yu. Study on resistance of UHMWPE thin panels to oblique penetration of small arms ammo[J]. Explosion And Shock Waves, 2024, 44(11): 113301. doi: 10.11883/bzycj-2023-0208
Citation: SONG Fuchen, GUO Hui, CHEN Yu. Study on resistance of UHMWPE thin panels to oblique penetration of small arms ammo[J]. Explosion And Shock Waves, 2024, 44(11): 113301. doi: 10.11883/bzycj-2023-0208

Study on resistance of UHMWPE thin panels to oblique penetration of small arms ammo

doi: 10.11883/bzycj-2023-0208
  • Received Date: 2023-06-08
  • Rev Recd Date: 2024-05-13
  • Available Online: 2024-05-14
  • Publish Date: 2024-11-15
  • In order to solve the problem of high-performance lightweight bulletproof inserts protection of penetration of light weapon killing elements, this paper carried out penetration experiments on ultra-high molecular weight polyethylene (UHMWPE) laminated sheet, analyzed the deformation and failure characteristics of the UHMWPE sheet after penetration and compared the damage morphology of light weapon killing element. A numerical model of UHMWPE laminate against the penetration of light weapon killers was established by using the finite element software LS-DYNA, and the validity of the numerical model was verified by the experimental results of the damage morphology of the target plate, the depth of the depression and the deformation of the warhead. On this basis, the failure mode of the UHMWPE thin plate subjected to oblique penetration by the projectile is investigated by numerical methods, and the influence of the incidence angle on the ricochet phenomenon and the damage morphology of UHMWPE thin plate under the penetration of three kinds of light weapon killing elements is revealed. The results show that the ricochet angles of 7.62 mm×25 mm steel-core bullets and 7.62 mm×39 mm ordinary bullets (steel-core) obliquely penetrating UHMWPE plates are located in the range of 45°–50°; 7.62 mm×25 mm lead-core bullets can be completely ricocheted out when the angle of incidence is greater than 70°, and the rest of the bullets are in the form of broken shrapnel splinters, and the destruction of the bullet body has an effect on the ricochet condition; the oblique penetration bullets produce a large area and a large number of damage patterns at a smaller angle of incidence; the oblique penetration bullets produce a larger area and a larger number of damage patterns in the UHMWPE plates. When the angle of incidence is small, the oblique penetration bullet will produce a larger area and a certain depth of the crater, the next bullet will be easier to penetrate the crater weakness of the fiber plate, and the oblique penetration effect on the thin plate by the secondary penetration of the negative impact, the angle of incidence is larger, the bullet will be more complete ricochet and has a high residual velocity, which will produce a secondary killing of personnel. The research results can be used for UHMWPE thin plate for lightweight military bulletproof insert design to provide reference.
  • loading
  • [1]
    赵美琪, 张乐天, 叶纯麟, 等. 超高分子量聚乙烯高抗冲性能优化研究及进展 [J]. 化工新型材料, 2021, 49(10): 53–57, 62. DOI: 10.19817/j.cnki.issn1006-3536.2021.10.011.

    ZHAO M Q, ZHANG L T, YE C L, et al. Progress on optimization of high impact resistance of UHMWPE [J]. New Chemical Materials, 2021, 49(10): 53–57, 62. DOI: 10.19817/j.cnki.issn1006-3536.2021.10.011.
    [2]
    叶卓然, 罗靓, 潘海燕, 等. 超高分子量聚乙烯纤维及其复合材料的研究现状与分析 [J]. 复合材料学报, 2022, 39(9): 4286–4309. DOI: 10.13801/j.cnki.fhclxb.20220803.002.

    YE Z R, LUO L, PAN H Y, et al. Research status and analysis of ultra-high molecular weight polyethylene fiber and its composites [J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4286–4309. DOI: 10.13801/j.cnki.fhclxb.20220803.002.
    [3]
    PEINADO J, LIU L J, OLMEDO Á, et al. Influence of stacking sequence on the impact behaviour of UHMWPE soft armor panels [J]. Composite Structures, 2022, 286: 115365. DOI: 10.1016/j.compstruct.2022.115365.
    [4]
    付杰, 李伟萍, 黄献聪, 等. 新型超高分子量聚乙烯膜材料防弹性能及机理 [J]. 兵工学报, 2021, 42(11): 2453–2464. DOI: 10.3969/j.issn.1000-1093.2021.11.019.

    FU J, LI W P, HUANG X C, et al. Bullet-proof performance and mechanism of new ultra-high molecular weight polyethylene film [J]. Acta Armamentarii, 2021, 42(11): 2453–2464. DOI: 10.3969/j.issn.1000-1093.2021.11.019.
    [5]
    董彬, 魏汝斌, 王小伟, 等. 高性能有机纤维在防弹复合材料领域应用研究现状 [J]. 复合材料科学与工程, 2023(1): 116–123. DOI: 10.19936/j.cnki.2096-8000.20230128.015.

    DONG B, WEI R B, WANG X W, et al. Review of high performance organic fibers in ballistic composite fields [J]. Composites Science and Engineering, 2023(1): 116–123. DOI: 10.19936/j.cnki.2096-8000.20230128.015.
    [6]
    GOLDSMITH W. Non-ideal projectile impact on targets [J]. International Journal of Impact Engineering, 1999, 22(2/3): 95–395. DOI: 10.1016/S0734-743X(98)00031-1.
    [7]
    WEI H Y, ZHANG X F, LIU C, et al. Oblique penetration of ogive-nosed projectile into aluminum alloy targets [J]. International Journal of Impact Engineering, 2021, 148: 103745. DOI: 10.1016/j.ijimpeng.2020.103745.
    [8]
    CAO M J, CHEN L, FANG Q. Penetration and perforation characteristics of the novel UHMWPE film laminates by the 7.62 mm standard bullet [J]. Composite Structures, 2023, 308: 116669. DOI: 10.1016/j.compstruct.2023.116669.
    [9]
    王晓强, 朱锡, 梅志远, 等. 超高分子量聚乙烯纤维增强层合厚板抗弹性能实验研究 [J]. 爆炸与冲击, 2009, 29(1): 29–34. DOI: 10.11883/1001-1455(2009)01-0029-06.

    WANG X Q, ZHU X, MEI Z Y, et al. Ballistic performances of ultra-high molecular weight polyethylene fiber-reinforced thick laminated plates [J]. Explosion and Shock Waves, 2009, 29(1): 29–34. DOI: 10.11883/1001-1455(2009)01-0029-06.
    [10]
    王智, 常利军, 黄星源, 等. 爆炸冲击波与破片联合作用下防弹衣复合结构防护效果的数值模拟 [J]. 爆炸与冲击, 2023, 43(6): 063202. DOI: 10.11883/bzycj-2022-0515.

    WANG Z, CHANG L J, HUANG X Y, et al. Simulation on the defending effect of composite structure of body armor under the combined action of blast wave and fragments [J]. Explosion and Shock Waves, 2023, 43(6): 063202. DOI: 10.11883/bzycj-2022-0515.
    [11]
    ZHU Y H, LIU K, WEN Y K, et al. Experimental and numerical study on the ballistic performance of ultrahigh molecular weight polyethylene laminate [J]. Polymer Composites, 2021, 42(10): 5168–5198. DOI: 10.1002/PC.26214.
    [12]
    ZHANG R, HAN B, ZHOU Y, et al. Mechanism-driven analytical modelling of UHMWPE laminates under ballistic impact [J]. International Journal of Mechanical Sciences, 2023, 245: 108132. DOI: 10.1016/j.ijmecsci.2023.108132.
    [13]
    贾楠, 焦亚男, 周庆, 等. 碳化硅-超高分子量聚乙烯纤维增强树脂基复合材料复合装甲板的抗穿甲弹侵彻性能及其损伤机制 [J]. 复合材料学报, 2022, 39(10): 4908–4917. DOI: 10.13801/j.cnki.fhclxb.20210928.002.

    JIA N, JIAO Y N, ZHOU Q, et al. Anti-penetration performance of SiC-ultra-high molecular weight polyethylene fiber reinforced resin matrix composite armor plate against armor piercing projectile and its damage mechanism [J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4908–4917. DOI: 10.13801/j.cnki.fhclxb.20210928.002.
    [14]
    张元豪, 程忠庆, 侯海量, 等. 结构间隙对夹芯式复合装甲结构抗侵彻性能的影响 [J]. 爆炸与冲击, 2019, 39(12): 125104. DOI: 10.11883/bzycj-2019-0270.

    ZHANG Y H, CHENG Z Q, HOU H L, et al. Influence of structural interspace on anti-penetration performance of sandwich composite armor system [J]. Explosion and Shock Waves, 2019, 39(12): 125104. DOI: 10.11883/bzycj-2019-0270.
    [15]
    MO G L, MA Q W, JIN Y X, et al. Delamination process in cross-ply UHMWPE laminates under ballistic penetration [J]. Defence Technology, 2021, 17(1): 278–286. DOI: 10.1016/j.dt.2020.05.001.
    [16]
    刘迪, 肖依, 江旭伟, 等. SiC/UHMWPE复合装甲板抗侵彻性能的试验与数值模拟 [J]. 上海大学学报(自然科学版), 2020, 26(2): 234–243. DOI: 10.12066/j.issn.1007-2861.2037.

    LIU D, XIAO Y, JIANG X W, et al. Anti-penetration capability of SiC/UHMWPE composite armour plates through experimental and numerical simulation [J]. Journal of Shanghai University (Natural Science Edition), 2020, 26(2): 234–243. DOI: 10.12066/j.issn.1007-2861.2037.
    [17]
    HU P C, YANG H F, ZHANG P, et al. Experimental and numerical investigations into the ballistic performance of ultra-high molecular weight polyethylene fiber-reinforced laminates [J]. Composite Structures, 2022, 290: 115499. DOI: 10.1016/j.compstruct.2022.115499.
    [18]
    CAO M J, CHEN L, XU R Z, et al. Effect of the temperature on ballistic performance of UHMWPE laminate with limited thickness [J]. Composite Structures, 2021, 277: 114638. DOI: 10.1016/j.compstruct.2021.114638.
    [19]
    QU K F, WU C Q, LIU J, et al. Ballistic performance of multi-layered aluminium and UHMWPE fibre laminate targets subjected to hypervelocity impact by tungsten alloy ball [J]. Composite Structures, 2020, 253: 112785. DOI: 10.1016/j.compstruct.2020.112785.
    [20]
    季海波, 王昕, 赵振宇, 等. 带攻角平头弹侵彻不同厚度芳纶层合板的数值模拟 [J]. 爆炸与冲击, 2023, 43(6): 063302. DOI: 10.11883/bzycj-2022-0231.

    JI H B, WANG X, ZHAO Z Y, et al. Simulation on penetration of a flat-nosed projectile with attack angle into aramid laminates having varying thickness [J]. Explosion and Shock Waves, 2023, 43(6): 063302. DOI: 10.11883/bzycj-2022-0231.
    [21]
    MEYER C S, CATUGAS I G, GILLESPIE J W JR, et al. Investigation of normal, lateral, and oblique impact of microscale projectiles into unidirectional glass/epoxy composites [J]. Defence Technology, 2022, 18(11): 1960–1978. DOI: 10.1016/j.dt.2021.08.012.
    [22]
    ZHU Y H, ZHANG X Y, XUE B Y, et al. High-strain-rate compressive behavior of UHMWPE fiber laminate [J]. Applied Sciences, 2020, 10(4): 1505. DOI: 10.3390/app10041505.
    [23]
    CARRASCO-BALTASAR D, GARCÍA-CASTILLO S, IVAÑEZ I, et al. Modelling of woven CFRP plates subjected to oblique high-velocity impact and membrane loads [J]. Composite Structures, 2023, 303: 116344. DOI: 10.1016/j.compstruct.2022.116344.
    [24]
    LÓPEZ-PUENTE J, ZAERA R, NAVARRO C. Experimental and numerical analysis of normal and oblique ballistic impacts on thin carbon/epoxy woven laminates [J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(2): 374–387. DOI: 10.1016/j.compositesa.2007.10.004.
    [25]
    HAZELL P J, KISTER G, STENNETT C, et al. Normal and oblique penetration of woven CFRP laminates by a high velocity steel sphere [J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(5): 866–874. DOI: 10.1016/j.compositesa.2008.01.007.
    [26]
    FAWAZ Z, ZHENG W, BEHDINAN K. Numerical simulation of normal and oblique ballistic impact on ceramic composite armours [J]. Composite Structures, 2004, 63(3/4): 387–395. DOI: 10.1016/S0263-8223(3)00187-9.
    [27]
    O’MASTA M R, CRAYTON D H, DESHPANDE V S, et al. Mechanisms of penetration in polyethylene reinforced cross-ply laminates [J]. International Journal of Impact Engineering, 2015, 86: 249–264. DOI: 10.1016/j.ijimpeng.2015.08.012.
    [28]
    胡年明, 朱锡, 侯海量, 等. 高速破片侵彻下高分子聚乙烯层合板的弹道极限估算方法 [J]. 中国舰船研究, 2014, 9(4): 55–62. DOI: 10.3969/j.issn.1673-3185.2014.04.009.

    HU N M, ZHU X, HOU H L, et al. Estimating method for the ballistic limit of ultra-high molecular weight polyethylene fiber-reinforced laminates under high-velocity fragment penetration [J]. Chinese Journal of Ship Research, 2014, 9(4): 55–62. DOI: 10.3969/j.issn.1673-3185.2014.04.009.
    [29]
    XIE Y, WANG T, WANG L M, et al. Numerical investigation of ballistic performance of SiC/TC4/UHMWPE composite armor against 7.62 mm AP projectile [J]. Ceramics International, 2022, 48(16): 24079–24090. DOI: 10.1016/j.ceramint.2022.05.088.
    [30]
    LÄSSIG T, NGUYEN L, MAY M, et al. A non-linear orthotropic hydrocode model for ultra-high molecular weight polyethylene in impact simulations [J]. International Journal of Impact Engineering, 2015, 75: 110–122. DOI: 10.1016/j.ijimpeng.2014.07.004.
    [31]
    MALIK M A A. Experimental and numerical study on the mechanical properties of adhesive joints under impact loads using Ls-Dyna [D]. Di Torino: Politecnico di Torino, 2021: 17–30.
    [32]
    CAO D F, DUAN Q F, HU H X, et al. Computational investigation of both intra-laminar matrix cracking and inter-laminar delamination of curved composite components with cohesive elements [J]. Composite Structures, 2018, 192: 300–309. DOI: 10.1016/j.compstruct.2018.02.072.
    [33]
    JOHNSON W, SENGUPTA A K, GHOSH S K. High velocity oblique impact and ricochet mainly of long rod projectiles: an overview [J]. International Journal of Mechanical Sciences, 1982, 24(7): 425–436. DOI: 10.1016/0020-7403(82)90052-2.
    [34]
    BØRVIK T, OLOVSSON L, DEY S, et al. Normal and oblique impact of small arms bullets on AA6082-T4 aluminium protective plates [J]. International Journal of Impact Engineering, 2011, 38(7): 577–589. DOI: 10.1016/j.ijimpeng.2011.02.001.
    [35]
    IQBAL M A, GUPTA G, GUPTA N K. 3D numerical simulations of ductile targets subjected to oblique impact by sharp nosed projectiles [J]. International Journal of Solids and Structures, 2010, 47(2): 224–237. DOI: 10.1016/j.ijsolstr.2009.09.032.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(7)

    Article Metrics

    Article views (117) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return