Citation: | CHEN Junhong, YIN Biao, XU Weifang, ZHANG Fangju, XIE Ruoze. The coupled thermal-plastic behavior of TC11 titanium alloy[J]. Explosion And Shock Waves, 2024, 44(5): 053101. doi: 10.11883/bzycj-2023-0228 |
[1] |
GORYNIN I V. Titanium alloys for marine application [J]. Materials Science and Engineering: A, 1999, 263(2): 112–116. DOI: 10.1016/S0921-5093(98)01180-0.
|
[2] |
PETERS M, KUMPFERT J, WARD C H, et al. Titanium alloys for aerospace applications [J]. Advanced Engineering Materials, 2003, 5(6): 419–427. DOI: 10.1002/adem.200310095.
|
[3] |
GURRAPPA I. Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications [J]. Materials Characterization, 2003, 51(2/3): 131–139. DOI: 10.1016/j.matchar.2003.10.006.
|
[4] |
LEYENS C, PETERS M. Titanium and titanium alloys [M]. Weinheim: Wiley-VCH, 2003.
|
[5] |
RACK H J, QAZI J I. Titanium alloys for biomedical applications [J]. Materials Science and Engineering: C, 2006, 26(8): 1269–1277. DOI: 10.1016/j.msec.2005.08.032.
|
[6] |
RITTEL D, OSOVSKI S. Dynamic failure by adiabatic shear banding [J]. International Journal of Fracture, 2010, 162(1): 177–185. DOI: 10.1007/s10704-010-9475-8.
|
[7] |
BAI Y L. Thermo-plastic instability in simple shear [J]. Journal of the Mechanics and Physics of Solids, 1982, 30(4): 195–207. DOI: 10.1016/0022-5096(82)90029-1.
|
[8] |
GRADY D E, KIPP M E. The growth of unstable thermoplastic shear with application to steady-wave shock compression in solids [J]. Journal of the Mechanics and Physics of Solids, 1987, 35(1): 95–119. DOI: 10.1016/0022-5096(87)90030-5.
|
[9] |
GUO Y Z, RUAN Q C, ZHU S X, et al. Temperature rise associated with adiabatic shear band: causality clarified [J]. Physical Review Letters, 2019, 122(1): 015503. DOI: 10.1103/PhysRevLett.122.015503.
|
[10] |
GUO Y Z, RUAN Q C, ZHU S X, et al. Dynamic failure of titanium: temperature rise and adiabatic shear band formation [J]. Journal of the Mechanics and Physics of Solids, 2020, 135: 103811. DOI: 10.1016/j.jmps.2019.103811.
|
[11] |
ZHOU M, ROSAKIS A J, RAVICHANDRAN G. Dynamically propagating shear bands in impact-loaded prenotched plates—Ⅰ. experimental investigations of temperature signatures and propagation speed [J]. Journal of the Mechanics and Physics of Solids, 1996, 44(6): 981–1006. DOI: 10.1016/0022-5096(96)00003-8.
|
[12] |
LIAO S C, DUFFY J. Adiabatic shear bands in a Ti-6Al-4V titanium alloy [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(11): 2201–2231. DOI: 10.1016/S0022-5096(98)00044-1.
|
[13] |
RANC N, TARAVELLA L, PINA V, et al. Temperature field measurement in titanium alloy during high strain rate loading—adiabatic shear bands phenomenon [J]. Mechanics of Materials, 2008, 40(4/5): 255–270. DOI: 10.1016/j.mechmat.2007.08.002.
|
[14] |
苏冠龙, 龚煦, 李玉龙, 等. TC4在动态载荷下的剪切行为研究 [J]. 爆炸与冲击, 2015, 35(4): 527–535. DOI: 10.11883/1001-1455(2015)04-0527-09.
SU G L, GONG X, LI Y L, et al. Shear behavior of TC4 alloy under dynamic loading [J]. Explosion and Shock Waves, 2015, 35(4): 527–535. DOI: 10.11883/1001-1455(2015)04-0527-09.
|
[15] |
CHICHILI D R, RAMESH K T, HEMKER K J. Adiabatic shear localization in α-titanium: experiments, modeling and microstructural evolution [J]. Journal of the Mechanics and Physics of Solids, 2004, 52(8): 1889–1909. DOI: 10.1016/j.jmps.2004.02.013.
|
[16] |
李继承, 陈小伟, 陈刚. 921A钢纯剪切帽状试件绝热剪切变形的数值模拟 [J]. 爆炸与冲击, 2010, 30(4): 361–369. DOI: 10.11883/1001-1455(2010)04-0361-09.
LI J C, CHEN X W, CHEN G. Numerical simulations on adiabatic shear deformations of 921A steel pure shear hat-shaped specimens [J]. Explosion and Shock Waves, 2010, 30(4): 361–369. DOI: 10.11883/1001-1455(2010)04-0361-09.
|
[17] |
ZHANG J, TAN C W, REN Y, et al. Adiabatic shear fracture in Ti-6Al-4V alloy [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(11): 2396–2401. DOI: 10.1016/S1003-6326(11)61026-1.
|
[18] |
GIOVANOLA J H. Adiabatic shear banding under pure shear loading. part Ⅱ: fractographic and metallographic observations [J]. Mechanics of Materials, 1988, 7(1): 73–87. DOI: 10.1016/0167-6636(88)90007-5.
|
[19] |
LEWANDOWSKI J J, GREER A L. Temperature rise at shear bands in metallic glasses [J]. Nature Materials, 2006, 5(1): 15–18. DOI: 10.1038/nmat1536.
|
[20] |
CHEN J H, XU W F, ZHANG F J, et al. Strain rate dependent tension behavior of TC11 titanium alloys [J]. Rare Metal Materials and Engineering, 2021, 50(6): 1883–1889. DOI: 10.12442/j.issn.1002-185X.E20200020.
|
[21] |
陈军红, 徐伟芳, 张方举, 等. 冲击载荷作用下TC11钛合金失效模型中关键参数测试方法研究 [J]. 中国测试, 2018, 44(10): 164–168. DOI: 10.11857/j.issn.1674-5124.2018.10.028.
CHEN J H, XU W F, ZHANG F J, et al. The measurement of the key parameters in the dynamic failure mode of TC11 titanium alloy [J]. China Measurement & Test, 2018, 44(10): 164–168. DOI: 10.11857/j.issn.1674-5124.2018.10.028.
|
[22] |
《中国航空材料手册》编辑委员会. 中国航空材料手册. 第4卷: 钛合金 铜合金[M]. 2版. 北京: 中国标准出版社, 2002: 172–198.
Editorial Committee of China Aviation Materials Manual. China aeronautical materials handbook. volume 4: titanium alloy and copper alloy [M]. 2nd ed. Beijing: Standards Press of China, 2002: 172–198.
|
[23] |
ZHANG J, WANG Y, ZAN X, et al. The constitutive responses of Ti-6.6Al-3.3Mo-1.8Zr-0.29Si alloy at high strain rates and elevated temperatures [J]. Journal of Alloys and Compounds, 2015, 647: 97–104. DOI: 10.1016/j.jallcom.2015.05.131.
|