Citation: | ZHANG Haixia, CHEN Huan, JU Shilong. Effect of steel ratio on the impact resistance of GFRP tube concrete-encased steel composite members[J]. Explosion And Shock Waves, 2024, 44(4): 043202. doi: 10.11883/bzycj-2023-0246 |
[1] |
韩林海. 钢管混凝土结构-理论与实践 [M]. 3版. 北京: 科学出版社, 2017: 1–68.
HAN L H. Concrete filled steel tubular structures-theory and practice [M]. 3rd ed. Beijing: Science Press, 2017: 1–68.
|
[2] |
吴智深, 汪昕, 吴刚. FRP增强工程结构体系 [M]. 北京: 科学出版社, 2017: 1–106.
WU Z S, WANG X, WU G. FRP reinforced engineering structural systems [M]. Beijing: Science Press, 2017: 1–106.
|
[3] |
于冬雪, 于化杰, 黎红兵, 等. FRP建筑材料的结构性能及应用综述 [J]. 材料导报, 2021, 35(S2): 660–668.
YU D X, YU H J, LI H B, et al. Structure, property and application as building materials of FRP: a review [J]. Materials Reports, 2021, 35(S2): 660–668.
|
[4] |
张海霞, 刘鹤, 孙云杰. 内置钢骨GFRP管混凝土中长柱偏压承载力分析 [J]. 合肥工业大学学报(自然科学版), 2017, 40(7): 965–970. DOI: 10.3969/j.issn.1003-5060.2017.07.020.
ZHANG H X, LIU H, SUN Y J. Analysis of bearing capacity of steel-encased concrete filled GFRP tubes middle-long column subjected to eccentric compression load [J]. Journal of Hefei University of Technology (Natural Science), 2017, 40(7): 965–970. DOI: 10.3969/j.issn.1003-5060.2017.07.020.
|
[5] |
HUANG L, YU T, ZHANG S S. FRP-confined concrete-encased cross-shaped steel columns: effects of key parameters [J]. Composite Structures, 2021, 272: 114252. DOI: 10.1016/j.compstruct.2021.114252.
|
[6] |
KARIMI K, TAIT M J, EL-DAKHAKHNI W W. Analytical modeling and axial load design of a novel FRP-encased steel-concrete composite column for various slenderness ratios [J]. Engineering Structures, 2013, 46: 526–534. DOI: 10.1016/j.engstruct.2012.08.016.
|
[7] |
YU T, LIN G, ZHANG S S. Compressive behavior of FRP-confined concrete-encased steel columns [J]. Composite Structures, 2016, 154: 493–506. DOI: 10.1016/j.compstruct.2016.07.027.
|
[8] |
曹朋朋. FRP管约束钢骨混凝土中长柱偏压力学性能研究 [D]. 沈阳: 沈阳建筑大学, 2013: 13–63.
CAO P P. Mechanical behavior of steel-encased concrete filled FRP tube column under unidirectional eccentric compression [D]. Shenyang: Shenyang Jianzhu University, 2013: 13–63.
|
[9] |
PAN M L, WANG D Y, PEI W C, et al. Monotonic and cyclic compression behavior of axially loaded FRP-confined concrete-encased cross-shaped steel columns [J]. Composite Structures, 2023, 307: 116632. DOI: 10.1016/j.compstruct.2022.116632.
|
[10] |
ZHANG H X, JU S L, CHEN H. Seismic performance of GFRP tube concrete-encased steel composite columns under axial compression [J]. Journal of Constructional Steel Research, 2023, 200: 107641. DOI: 10.1016/j.jcsr.2022.107641.
|
[11] |
孙浩. 两端固支的GFRP管-钢骨混凝土构件抗冲击性能研究 [D]. 沈阳: 沈阳建筑大学, 2023: 13–73. DOI: 10.27809/d.cnki.gsjgc.2022.000253.
SUN H. Study on impact resistance of steel-encased concrete filled GFRP tubes member with fixed ends [D]. Shenyang: Shenyang Jianzhu University, 2023: 13–73. DOI: 10.27809/d.cnki.gsjgc.2022.000253.
|
[12] |
白慧宇. GFRP管约束十字钢骨混凝土方柱轴向冲击性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2022: 14–100. DOI: 10.27061/d.cnki.ghgdu.2022.004620.
BAI H Y. Axial impact behavior of GFRP tube-confined concrete-encased cross-shaped steel square columns [D]. Harbin: Harbin Institute of Technology, 2022: 14–100. DOI: 10.27061/d.cnki.ghgdu.2022.004620.
|
[13] |
刘烨, 王蕊, 李志刚. CFRP-混凝土-钢管组合结构在低速侧向撞击下的动力响应 [J]. 爆炸与冲击, 2018, 38(4): 759–767. DOI: 10.11883/bzycj-2016-0349.
LIU Y, WANG R, LI Z G. Finite element analysis of CFRP-concrete-steel composite structure under low velocity lateral impact loading [J]. Explosion and Shock Waves, 2018, 38(4): 759–767. DOI: 10.11883/bzycj-2016-0349.
|
[14] |
HSIAO H M, DANIEL I M, CORDES R D. Strain rate effects on the transverse compressive and shear behavior of unidirectional composites [J]. Journal of Composite Materials, 1999, 33(17): 1620–1642. DOI: 10.1177/002199839903301703.
|
[15] |
HALLETT S R, RUIZ C, HARDING J. The effect of strain rate on the interlaminar shear strength of a carbon/epoxy cross-ply laminate: comparison between experiment and numerical prediction [J]. Composites Science and Technology, 1999, 59(5): 749–758. DOI: 10.1016/S0266-3538(98)00117-1.
|
[16] |
LAM L, TENG J G. Stress-strain model for FRP-confined concrete under cyclic axial compression [J]. Engineering Structures, 2009, 31(2): 308–321. DOI: 10.1016/j.engstruct.2008.08.014.
|
[17] |
TAO Z, WANG Z B, YU Q. Finite element modelling of concrete-filled steel stub columns under axial compression [J]. Journal of Constructional Steel Research, 2013, 89: 121–131. DOI: 10.1016/j.jcsr.2013.07.001.
|
[18] |
Fib model code for concrete structures 2010 [Z]. Berlin: Ernst & Sohn, 2013.
|
[19] |
侯川川. 低速横向冲击荷载下圆钢管混凝土构件的力学性能研究 [D]. 北京: 清华大学, 2012: 50–51.
HOU C C. Study on performance of circular concrete-filled steel tubular (CFST) members under low velocity transverse impact [D]. Beijing: Tsinghua University, 2012: 50–51.
|
[20] |
WANG R, HAN L H, TAO Z. Behavior of FRP-concrete-steel double skin tubular members under lateral impact: experimental study [J]. Thin-Walled Structures, 2015, 95: 363–373. DOI: 10.1016/j.tws.2015.06.022.
|
[21] |
CHEN C, ZHAO Y H, LI J. Experimental investigation on the impact performance of concrete-filled FRP steel tubes [J]. Journal of Engineering Mechanics, 2015, 141(2): 04014112. DOI: 10.1061/(ASCE)EM.1943-7889.0000833.
|
[22] |
中华人民共和国住房和城乡建设部. 组合结构设计规范: JGJ 138—2016 [S]. 北京: 中国建筑工业出版社, 2016.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of composite structures: JGJ 138—2016 [S]. Beijing: China Architecture & Building Press, 2016.
|
[23] |
WU Q J, ZHI X D, LI Q X, et al. Experimental and numerical studies of GFRP-reinforced steel tube under low-velocity transverse impact [J]. International Journal of Impact Engineering, 2019, 127: 135–153. DOI: 10.1016/j.ijimpeng.2019.01.010.
|
[24] |
SHARMA H, HURLEBAUS S, GARDONI P. Performance-based response evaluation of reinforced concrete columns subject to vehicle impact [J]. International Journal of Impact Engineering, 2012, 43: 52–62. DOI: 10.1016/j.ijimpeng.2011.11.007.
|
[25] |
ZHU X, ZHAO P J, TIAN Y, et al. Experimental study of RC columns and composite columns under low-velocity impact [J]. Thin-Walled Structures, 2021, 160: 107374. DOI: 10.1016/j.tws.2020.107374.
|
[1] | XU Zhaowei, WANG Wei, LI Yishuo, ZHANG Zhonghao, ZHANG Congkun. Blast resistance of polyurea/reinforced concrete thick slab composite structures under contact explosion[J]. Explosion And Shock Waves, 2025, 45(3): 033104. doi: 10.11883/bzycj-2024-0083 |
[2] | QIAN Haimin, PAN Yahao, ZONG Zhouhong, GAN Lu, WU Xi, SUN Miaomiao. Experimental study on dynamic response of underground utility tunnel under ground explosion[J]. Explosion And Shock Waves, 2024, 44(7): 075102. doi: 10.11883/bzycj-2023-0400 |
[3] | YANG Yaotang, WANG Rui, ZHAO Hui, HOU Chuanchuan. Impact resistence mechanism and deflection prediction of steel-concrete composite wall under fire exposure[J]. Explosion And Shock Waves, 2024, 44(1): 012101. doi: 10.11883/bzycj-2023-0052 |
[4] | YANG Shigang, LUO Ze, XU Jiheng, FANG Qin, YANG Ya, XU Guolin, TANG Junjie. Failure modes of concrete structure under penetration and explosion[J]. Explosion And Shock Waves, 2024, 44(1): 015102. doi: 10.11883/bzycj-2023-0003 |
[5] | SONG Chunming, ZHONG Jiahe, XU Jiwei, WU Xuezhi, CHENG Yihao. Experimental study on dynamic response and failure mode transformation of reinforced concrete beams under impact[J]. Explosion And Shock Waves, 2024, 44(1): 015101. doi: 10.11883/bzycj-2023-0102 |
[6] | YE Haiwang, QIAN Zhengkun, LEI Tao, WEN Ying, LI Rui. Bedding effect and macro-micro mechanism of graphite ore dynamic mechanical properties under impact loads[J]. Explosion And Shock Waves, 2023, 43(12): 123102. doi: 10.11883/bzycj-2023-0223 |
[7] | XIA Mengtao, LI Minghong, ZONG Zhouhong, GAN Lu, HUANG Jie, LI Zhuo. Failure modes of precast segmental concrete-filled double-skin steel tube columns under large equivalent explosion[J]. Explosion And Shock Waves, 2023, 43(11): 112202. doi: 10.11883/bzycj-2022-0385 |
[8] | JIANG Shan, LU Guoyun, YANG Huiwei. Dynamic response and parameter analysis of concrete-filled steel tubular structure under lateral impact loading[J]. Explosion And Shock Waves, 2023, 43(11): 112203. doi: 10.11883/bzycj-2023-0039 |
[9] | LI Shengtong, WANG Wei, LIANG Shifa, SANG Qinyang, ZHENG Rongyue. Dynamic response of beam-slab composite structures under long-lasting explosion shock wave load[J]. Explosion And Shock Waves, 2022, 42(7): 075103. doi: 10.11883/bzycj-2021-0495 |
[10] | WANG Huiming, LIU Fei, YAN Luhui, WANG Jianhui, SHANG Wei, LYU Linmei. Local damage effects of reinforced concrete beams under contact explosions[J]. Explosion And Shock Waves, 2020, 40(12): 121404. doi: 10.11883/bzycj-2020-0171 |
[11] | WANG Wei, YANG Jianchao, WANG Jianhui, GAO Weiliang, WANG Xing. Experimental research on anti-contact explosion of POZD coated square reinforced concrete slab[J]. Explosion And Shock Waves, 2020, 40(12): 121402. doi: 10.11883/bzycj-2020-0180 |
[12] | JIN Jiefang, WU Yue, ZHANG Rui, WANG Xibo, YU Xiong, ZHONG Yilu. Effect of impact velocity and axial static stress on fragmentation and energy dissipation of red sandstone[J]. Explosion And Shock Waves, 2020, 40(10): 103101. doi: 10.11883/bzycj-2019-0479 |
[13] | HE Liling, ZHANG Fangju, YAN Yixia, XIE Ruoze, XU Aimin, ZHOU Yanliang. Study on the impact initiated reaction of Ti-6Al-4V prejectiles by the fracture modes[J]. Explosion And Shock Waves, 2020, 40(12): 122301. doi: 10.11883/bzycj-2020-0046 |
[14] | SI Qiang, WANG Rui. Dynamic behaviors of a hollow reinforced concrete column with an inner octagon steel tube under lateral impact[J]. Explosion And Shock Waves, 2019, 39(11): 115101. doi: 10.11883/bzycj-2018-0237 |
[15] | ZHAI Ximei, ZHAO Xinyu. Damage modes and failure mechanism of concrete dome of LNG storage tank[J]. Explosion And Shock Waves, 2018, 38(5): 966-976. doi: 10.11883/bzycj-2017-0090 |
[16] | ZhangShe-rong, WangGao-hu. Antiknockperformanceofconcretegravitydam subjectedtounderwaterexplosion[J]. Explosion And Shock Waves, 2013, 33(3): 255-263. doi: 10.11883/1001-1455(2013)03-0255-08 |
[17] | WANG Wei, ZHANG Duo, LU Fang-yun, TANG Fu-jing, WANG Song-chuan. Anti-explosionperformancesofsquarereinforcedconcreteslabs underclose-inexplosions[J]. Explosion And Shock Waves, 2012, 32(3): 251-258. doi: 10.11883/1001-1455(2012)03-0251-08 |
[18] | ZHANG Qi-ling, LI Duan-you, LI Bo. Damagepropagationandfailuremodeofgravitydam subjectedtounderwaterexplosion[J]. Explosion And Shock Waves, 2012, 32(6): 609-615. doi: 10.11883/1001-1455(2012)06-0609-07 |
[19] | ZHANG She-rong, WANG Gao-hui, WANG Chao, SUN Bo. Failuremodeanalysisofconcretegravitydam subjectedtounderwaterexplosion[J]. Explosion And Shock Waves, 2012, 32(5): 501-507. doi: 10.11883/1001-1455(2012)05-0501-07 |
[20] | CHEN Gang, CHEN Xiao-wei, CHEN Zhong-fu, QU Ming. Simulations of A3 steel blunt projectiles impacting 45 steel plates[J]. Explosion And Shock Waves, 2007, 27(5): 390-397. doi: 10.11883/1001-1455(2007)05-0390-08 |