Citation: | JI Wentao, GUO Xiaoxiao, CHEN Zhitao, CAI Chongchong, WANG Yan. Suppression characteristics and mechanism of polyethylene dust explosion by Mg-Al hydrotalcite[J]. Explosion And Shock Waves, 2024, 44(4): 045401. doi: 10.11883/bzycj-2023-0263 |
[1] |
MAZUR K, JAKUBOWSKA P, ROMAÑSKA P, et al. Green high density polyethylene (HDPE) reinforced with basalt fiber and agricultural fillers for technical applications [J]. Composites Part B: Engineering, 2020, 202: 108399. DOI: 10.10.1016/j.compositesb.2020.108399.
|
[2] |
OKHOTNIKOVA E S, GANEEVA Y M, FROLOV I N, et al. Structural characterization and application of bitumen modified by recycled polyethylenes [J]. Construction and Building Materials, 2022, 316: 126118. DOI: 10.1016/j.conbuildmat.2021.126118.
|
[3] |
SAHI S, DJIDJELLI H, BOUKERROU A. Study of the properties and biodegradability of the native and plasticized corn flour-filled low density polyethylene composites for food packaging applications [J]. Materials Today: Proceedings, 2021, 36: 67–73. DOI: 10.1016/j.matpr.2020.05.317.
|
[4] |
马龙. 全球聚乙烯供需分析与预测 [J]. 世界石油工业, 2021, 28(4): 58–65.
MA L. Anaysis and forecast of global polyethylene supply and demand [J]. World Petroleum Industry, 2021, 28(4): 58–65.
|
[5] |
马冉, 高建村, 杨凯, 等. 聚乙烯粉尘爆炸研究进展 [J]. 中国粉体技术, 2017, 23(6): 59–63. DOI: CNKI:SUN:FTJS.0.2017-06-012.
MA R, GAO J C, YANG K, et al. Progress research on polyethylene dust explosion [J]. China Power Science and Technology, 2017, 23(6): 59–63. DOI: CNKI:SUN:FTJS.0.2017-06-012.
|
[6] |
YANG K, CAO J, ZHAO Y, et al. Inerting effect of N2 on explosion of LDPE dust/ethylene hybrid mixtures [J]. Journal of Loss Prevention in the Process Industries, 2021, 70: 104431. DOI: 10.1016/j.jlp.2021.104431.
|
[7] |
GAN B, GAO W, JIANG H, et al. Flame propagation behaviors and temperature characteristics in polyethylene dust explosions [J]. Powder Technology, 2018, 328: 345–357. DOI: 10.1016/j.powtec.2018.01.061.
|
[8] |
PANG L, MA R, HU S, et al. Flame propagation of local LDPE dust cloud in a semi-open duct [J]. Experimental Thermal and Fluid Science, 2019, 101: 209–216. DOI: 10.1016/j.expthermflusci.2018.10.025.
|
[9] |
庞磊, 马冉, 高建村, 等. 粉尘云浓度对 HDPE粉尘云最低着火温度的影响 [J]. 中国安全生产科学技术, 2017, 13(5): 5–9. DOI: 10.11731/j.issn.1673-193x.2017.05.001.
PANG L, MA R, GAO J C, et al. Effect of dust cloud concentration on minimum ignition temperature of HDPE dust cloud [J]. China Safety Science and Technology, 2017, 13(5): 5–9. DOI: 10.11731/j.issn.1673-193x.2017.05.001.
|
[10] |
庞磊, 赵钰, 杨凯, 等. 低密度聚乙烯粉尘云爆炸敏感性实验 [J]. 消防科学与技术, 2019, 38(9): 1211–1215. DOI: CNKI:SUN:XFKJ.0.2019-09-004.
PANG L, ZHAO Y, YANG K, et al. Explosion susceptibility experiment of low-density polyethylene dust cloud [J]. Fire Science and Technology, 2019, 38(9): 1211–1215. DOI: CNKI:SUN:XFKJ.0.2019-09-004.
|
[11] |
LIU J, MENG X, YAN K, et al. Study on the effect and mechanism of Ca(H2PO4)2 and CaCO3 powders on inhibiting the explosion of titanium powder [J]. Powder Technology, 2022, 395: 158–167. DOI: 10.1016/j.powtec.2021.09.067.
|
[12] |
LU K, CHEN X, LUO Z, et al. The inhibiting effects of sodium carbonate on coal dust deflagration based on thermal methods [J]. Fuel, 2022, 315: 123122. DOI: 10.1016/j.fuel.2021.123122.
|
[13] |
ZHAO Q, CHEN X, DAI H, et al. Inhibition of diammonium phosphate on the wheat dust explosion [J]. Powder technology, 2020, 367: 751–761. DOI: 10.1016/j.powtec.2020.04.026.
|
[14] |
ZHANG Y, PAN Z, YANG J, et al. Study on the suppression mechanism of (NH4)2CO3 and SiC for polyethylene deflagration based on flame propagation and experimental analysis [J]. Powder Technology, 2022, 399: 117193. DOI: 10.1016/J.POWTEC.2022.117193.
|
[15] |
WANG Y, QI Y, PEI B, et al. Suppression of polyethylene dust explosion by sodium bicarbonate [J]. Powder Technology, 2020, 367: 206–212. DOI: 10.1016/j.powtec.2020.03.049.
|
[16] |
LIN S, LIU Z, QIAN J, et al. Inertant effects and mechanism of Al(OH)3 powder on polyethylene dust explosions based on flame propagation behavior and thermal analysis [J]. Fire Safety Journal, 2021, 124: 103392. DOI: 10.1016/j.firesaf.2021.103392.
|
[17] |
ADDAI E K, GABEL D, KRAUSE U. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures [J]. Journal of Hazardous Materials, 2016, 307: 302–311. DOI: 10.1016/j.jhazmat.2016.01.018.
|
[18] |
JIANG H, BI M, LI B, et al. Inhibition evaluation of ABC powder in aluminum dust explosion [J]. Journal of Hazardous Materials, 2019, 361: 273–282. DOI: 10.1016/j.jhazmat.2018.07.045.
|
[19] |
SINGHAL A, SKANDAN G, WANG A, et al. On nanoparticle aggregation during vapor phase synthesis [J]. Nanostructured Materials, 1999, 11(4): 545–552. DOI: 10.1016/S0965-9773(99)00343-8.
|
[20] |
余明高, 贺涛, 李海涛, 等. 改性高岭土抑爆剂对瓦斯煤尘复合爆炸压力的影响 [J]. 煤炭学报, 2022, 47(1): 348–359. DOI: 10.13225/j.cnki.jccs.yg21.1731.
YU M G, HE T, LI H T, et al. Influence of modified kaoline inhibitor on the explosion suppression pressure of the methane-coal dust mixture [J]. Journal of China Coal Society, 2022, 47(1): 348–359. DOI: 10.13225/j.cnki.jccs.yg21.1731.
|
[21] |
XU S, ZHANG M, LI S Y, et al. The effect of ammonium polyphosphate on the mechanism of phosphorous-containing hydrotalcite synergism of flame retardation of polypropylene [J]. Applied Clay Science, 2020, 185: 105348. DOI: 10.1016/j.clay.2019.105348.
|
[22] |
SANTOSA S J, ASTUTI D P. Reusable high performance of calcined Mg/Al hydrotalcite for the removal of Navy Blue and Yellow F3G dyes [J]. Chinese Journal of Chemical Engineering, 2021, 38: 247–254. DOI: 10.1016/j.cjche.2020.08.038.
|
[23] |
CHEN J, WANG C, ZHANG Y, et al. Engineering ultrafine NiS cocatalysts as active sites to boost photocatalytic hydrogen production of Mg-Al layered double hydroxide [J]. Applied Surface Science, 2020, 506: 144999. DOI: 10.1016/j.apsusc.2019.144999.
|
[24] |
NAKAYAMA H, HATAKEYAMA A, TSUHAKO M. Encapsulation of nucleotides and DNA into Mg-Al layered double hydroxide [J]. International journal of pharmaceutics, 2010, 393(1/2): 105–112. DOI: 10.1016/j.ijpharm.2010.04.013.
|
[25] |
PÉREZ A, OTERO R, ESQUINAS A R, et al. Potential use of modified hydrotalcites as adsorbent of bentazon and metazachlor [J]. Applied clay science, 2017, 141: 300–307. DOI: 10.1016/j.clay.2017.03.007.
|
[26] |
GUALANDI I, TESSAROLO M, MARIANI F, et al. Layered double hydroxide-modified organic electrochemical transistor for glucose and lactate biosensing [J]. Sensors, 2020, 20(12): 3453. DOI: 10.3390/s20123453.
|
[27] |
ZHOU X, MU X, CAI W, et al. Design of hierarchical NiCo-LDH@PZS hollow dodecahedron architecture and application in high-performance epoxy resin with excellent fire safety [J]. ACS Applied Materials & Interfaces, 2019, 11(44): 41736–41749. DOI: 10.1021/acsami.9b16482.
|
[28] |
QIAN Y, QIAO P, LI L, et al. Hydrothermal synthesis of lanthanum-doped MgAl-layered double hydroxide/graphene oxide hybrid and its application as flame retardant for thermoplastic polyurethane [J]. Advances in Polymer Technology, 2020, 2020(3): 1–10. DOI: 10.1155/2020/1018093.
|
[29] |
HUANG C, CHEN X, YUAN B, et al. Suppression of wood dust explosion by ultrafine magnesium hydroxide [J]. Journal of hazardous materials, 2019, 378: 120723. DOI: 10.1016/j.jhazmat.2019.05.116.
|
[30] |
ZHANG L, BIAN Y, KUAI D. Preparation and flame retardant property of nano-aluminum hydroxide foam for preventing spontaneous coal combustion [J]. Fuel, 2021, 304: 121494. DOI: 10.1016/J.FUEL.2021.121494.
|
[31] |
WANG Z, MENG X, YAN K, et al. Inhibition effects of Al(OH)3 and Mg(OH)2 on Al-Mg alloy dust explosion [J]. Journal of Loss Prevention in the Process Industries, 2020, 66: 104206. DOI: 10.1016/j.jlp.2020.104206.
|
[32] |
WANG Z, MENG X, YAN K, et al. Study on the inhibition of Al-Mg alloy dust explosion by modified Mg(OH)2 [J]. Powder Technology, 2021, 384: 284–296. DOI: 10.1016/j.powtec.2021.02.037.
|
[33] |
WANG X, DAI H, LIANG G, et al. Flame propagation characteristics of mixed pulverized coal at the atmosphere of gasification [J]. Fuel, 2021, 300: 120954. DOI: 10.1016/J.FUEL.2021.120954.
|
[34] |
WANG Q, SUN Y, JIANG J, et al. Inhibiting effects of gas-particle mixtures containing CO2, Mg(OH)2 particles, and NH4H2PO4 particles on methane explosion in a 20-L closed vessel [J]. Journal of Loss Prevention in the Process Industries, 2020, 64: 104082. DOI: 10.1016/j.jlp.2020.104082.
|
[35] |
YAHYAOUI R, JIMENEZ P E S, MAQUEDA L A P, et al. Synthesis, characterization and combined kinetic analysis of thermal decomposition of hydrotalcite (Mg6Al2(OH)16CO3·4H2O) [J]. Thermochimica Acta, 2018, 667: 177–184. DOI: 10.1016/j.tca.2018.07.025.
|
[36] |
国家技术监督局. 粉尘云最大爆炸压力和最大爆炸压力上升速率测定方法: GB/T 16426—1996 [S]. 北京: 中国标准出版社, 1996.
|
[37] |
国家技术监督局. 粉尘云最低着火温度测定方法: GB/T 16429—1996 [S]. 北京: 中国标准出版社, 1997.
|
[38] |
Determination of explosion characteristics of dust clouds: Part 3: Determination of the lower explosion limit LEL of dust clouds: EN14034-3[S]. England: The Standards Policy and Strategy Committee, 2006: 5-16.
|
[39] |
邹瑜. 水滑石类功能材料的特性分析及其阻燃应用 [J]. 硅酸盐通报, 2020, 39(12): 4034–4042. DOI: 10.16552/j.cnki.issn1001-1625.2020.12.041.
ZOU Y. Characteristic analysis of layered double hydroxides functional materials and its flame retardant application [J]. Bulletion of the Chinese Ceramic society, 2020, 39(12): 4034–4042. DOI: 10.16552/j.cnki.issn1001-1625.2020.12.041.
|
[40] |
甘波. 乙烯/聚乙烯混合爆炸火焰传播机理研究[D]. 大连:大连理工大学, 2019. DOI: 10.26991/d.cnki.gdllu.2019.001235.
|
[41] |
李运芝, 袁俊明, 王保民. 粉尘爆炸研究进展[J]. 太原师范学院学报(自然科学版), 2004(2): 79–82. DOI: 10.3969/j.issn.1672-2027.2004.02.024.
LI Y Z, YUAN J M, WANG B M. Developing of dust exploding study[J]. Journal of Taiyuan Normal University (Natural Science Edition), 2004(2): 79–82. DOI: 10.3969/j.issn.1672-2027.2004.02.024.
|
[42] |
袁长高. 轻烃对聚乙烯装置燃爆危险的影响研究[D]. 青岛:中国石油大学(华东), 2015.
|
[43] |
JIN X, GU X, CHEN C, et al. The fire performance of polylactic acid containing a novel intumescent flame retardant and intercalated layered double hydroxides [J]. Journal of Materials Science, 2017, 52(20): 12235–12250. DOI: 10.1007/s10853-017-1354-5.
|
[44] |
鲍艳, 唐培, 刘超. 水滑石的制备及其阻燃性能研究进展 [J]. 精细化工, 2022, 39(1): 24–33. DOI: 10.13550/j.jxhg.20210696.
BAO Y, TANG P, LIU C. Research progress on preparation and flame retardant properties of layered double hydroxides [J]. Fine Chemicals, 2022, 39(1): 24–33. DOI: 10.13550/j. jxhg. 20210696. DOI: 10.13550/j.jxhg.20210696.
|
[45] |
DU J Z, JIN L, ZENG H Y, et al. Facile preparation of an efficient flame retardant and its application in ethylene vinyl acetate [J]. Applied Clay Science, 2019, 168: 96–105. DOI: 10.1016/j.clay.2018. 11. 004. DOI: 10.1016/j.clay.2018.11.004.
|
[46] |
XU S, LI S Y, ZHANG M, et al. Fabrication of green alginate-based and layered double hydroxides flame retardant for enhancing the fire retardancy properties of polypropylene [J]. Carbohydrate Polymers, 2020, 234: 115891. DOI: 10.1016/j.carbpol.2020.115891.
|
[47] |
ZHANG L, GUO D, TANTAI X, et al. Synthesis of three-dimensional hierarchical flower-like Mg-Al layered double hydroxides with excellent adsorption performance for organic anionic dyes [J]. Transactions of Tianjin University, 2021, 27(5): 394–408. DOI: 10.1007/s12209-020-00249-5.
|
[48] |
SHAN R, YAN L, YANG Y, et al. Highly efficient removal of three red dyes by adsorption onto Mg-Al-layered double hydroxide [J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 561–568. DOI: 10.1016/j.jiec.2014.03.019.
|
[49] |
WEI P R, CHENG S H, LIAO W N, et al. Synthesis of chitosan-coated near-infrared layered double hydroxide nanoparticles for in vivo optical imaging [J]. Journal of Materials Chemistry, 2012, 22(12): 5503–5513. DOI: 10.1039/C2JM16447G.
|