Volume 44 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
REN Siyuan, WU Qiang, ZHANG Pinliang, SONG Guangming, CHEN Chuan, GONG Zizheng, LI Zhengyu. A study of damage characteristics caused by hypervelocity impact of reactive projectile on the honeycomb sandwich panel double-layer structure[J]. Explosion And Shock Waves, 2024, 44(7): 073302. doi: 10.11883/bzycj-2023-0272
Citation: REN Siyuan, WU Qiang, ZHANG Pinliang, SONG Guangming, CHEN Chuan, GONG Zizheng, LI Zhengyu. A study of damage characteristics caused by hypervelocity impact of reactive projectile on the honeycomb sandwich panel double-layer structure[J]. Explosion And Shock Waves, 2024, 44(7): 073302. doi: 10.11883/bzycj-2023-0272

A study of damage characteristics caused by hypervelocity impact of reactive projectile on the honeycomb sandwich panel double-layer structure

doi: 10.11883/bzycj-2023-0272
  • Received Date: 2023-08-02
  • Rev Recd Date: 2024-04-11
  • Available Online: 2024-04-28
  • Publish Date: 2024-07-15
  • With the prepared reactive projectiles, and the two-stage light gas gun was used to conduct hypervelocity impact experiments on the honeycomb double-layer structure target. A high-speed camera was used to record the impact process, so the evolution process of debris clouds during the impact of the reactive projectile on honeycomb panels was obtained. By recycling the targets, the perforation characteristics of the honeycomb plate were analyzed, and the damage characteristics of various components inside the structure were found. Numerical simulations of impact process are carried out, and the hypervelocity penetration effect of reactive projectiles is analyzed according to the experimental and numerical simulation results. The expansion motion law of debris clouds is obtained, revealing the damage mechanism of the coupling effect of impact-detonation of reactive projectiles on the target. The results indicate that the impact initiation characteristic of reactive projectile can form smaller inlet and larger outlet holes on honeycomb panel, and the diameter of the outlet perforation increases with the increase of impact velocity. Under the impact of reactive projectile, the perforation diameters of honeycomb sandwich panel for the entry perforation, exit perforation and honeycomb core perforation all increase with the increase of reactive projectile mass. The perforation diameters are not affected by the thickness of honeycomb sandwich panel. The perforation diameter and honeycomb core perforation diameter first increase and then decrease with the increase of honeycomb panel thickness. The entry perforation does not change with the increase of honeycomb core cell diameter. The exit perforation diameter and honeycomb core perforation increase with the increase of honeycomb core cell diameter. Reactive projectile can generate high-temperature debris cloud with higher expansion velocity, and the expansion velocity increases with the increase of impact velocity. The coupling effect of impact-detonation of reactive projectile leads to increase of the damage area on the internal components of the target. In the velocity range of 2–6 km/s, the diameter of the perforation hole formed by the reactive projectile on the honeycomb sandwich panel is about 1.3–1.8 times that of the aluminum alloy projectile, and the expansion velocity of the debris cloud is 1.8–3.2 times that of the aluminum alloy projectile. Compared with the aluminum alloy projectile, the reactive projectile increases the damage area of the debris cloud on the inner and rear plates of the honeycomb sandwich panel double-layer structure, and improves the damage efficiency.
  • loading
  • [1]
    MOCK W JR, HOLT W H. Impact initiation of rods of pressed polytetrafluoroethylene (PTFE) and aluminum powders [J]. AIP Conference Proceedings, 2006, 845(1): 1097–1100. DOI: 10.1063/1.2263514.
    [2]
    ZHANG X F, SHI A S, ZHANG J, et al. Thermochemical modeling of temperature controlled shock-induced chemical reactions in multifunctional energetic structural materials under shock compression [J]. Journal of Applied Physics, 2012, 111(12): 2129–1156. DOI: 10.1063/1.4729048.
    [3]
    REN S Y, ZHANG Q M, WU Q, et al. Influence of impact-induced reaction characteristics of reactive composites on hypervelocity impact resistance [J]. Materials & Design, 2020, 192: 108722. DOI: 10.1016/j.matdes.2020.108722.
    [4]
    肖艳文, 徐峰悦, 余庆波, 等. 类钢密度活性材料弹丸撞击铝靶行为实验研究 [J]. 兵工学报, 2016, 37(6): 1016–1022. DOI: 10.3969/j.issn.1000-1093.2016.06.007.

    XIAO Y W, XU F Y, YU Q B, et al. Experimental research on behavior of active material projectile with steel-like density impacting aluminum target [J]. Acta Armamentarii, 2016, 37(6): 1016–1022. DOI: 10.3969/j.issn.1000-1093.2016.06.007.
    [5]
    NIELSON D B, TRUITT R M, RASMUSSEN N. Low temperature, extrudable, high density reactive materials: US-6962634-B2 [P]. 2005-11-08.
    [6]
    ZEMAN S. New aspects of initiation reactivities of energetic materials demonstrated on nitramines [J]. Journal of Hazardous Materials, 2006, 132(2/3): 155–164.
    [7]
    XU F Y, ZHENG Y F, YU Q B, et al. Experimental study on penetration behavior of reactive material projectile impacting aluminum plate [J]. International Journal of Impact Engineering, 2016, 95: 125–132. DOI: 10.1016/j.ijimpeng.2016.05.007.
    [8]
    XU F Y, LIU S B, ZHENG Y F, et al. Quasi-static compression properties and failure of PTFE/Al/W reactive materials [J]. Advanced Engineering Materials, 2017, 19(1): 1600350. DOI: 10.1002/adem.201600350.
    [9]
    XU F Y, YU Q B, ZHENG Y F, et al. Damage effects of double-spaced aluminum plates by reactive material projectile impact [J]. International Journal of Impact Engineering, 2017, 104: 13–20. DOI: 10.1016/j.ijimpeng.2017.01.023.
    [10]
    谢剑文, 李沛豫, 王海福, 等. 活性破片撞击油箱毁伤行为与机理 [J]. 兵工学报, 2022, 43(7): 1565–1577. DOI: 10.12382/bgxb.2021.0384.

    XIE J W, LI P Y, WANG H F, et al. Damage behaviors and mechanisms of reactive fragments impacting fuel tanks [J]. Acta Armamentarii, 2022, 43(7): 1565–1577. DOI: 10.12382/bgxb.2021.0384.
    [11]
    肖艳文, 徐峰悦, 郑元枫, 等. 活性材料弹丸碰撞油箱引燃效应实验研究 [J]. 北京理工大学学报, 2017, 37(6): 557–561. DOI: 10.15918/j.tbit1001-0645.2017.06.002.

    XIAO Y W, XU F Y, ZHENG Y F, et al. Experimental study on ignition effects of fuel-filled tank impacted by reactive material projectile [J]. Transactions of Beijing Institute of Technology, 2017, 37(6): 557–561. DOI: 10.15918/j.tbit1001-0645.2017.06.002.
    [12]
    葛超, 余庆波, 卢冠成, 等. 活性芯体子弹对柴油油箱引燃效应及机理研究 [J]. 北京理工大学学报, 2020, 40(10): 1072–1080, 1087. DOI: 10.15918/j.tbit1001-0645.2019.206.

    GE C, YU Q B, LU G C, et al. Igniting effects and mechanism of diesel oil tank by projectile with reactive core [J]. Transactions of Beijing Institute of Technology, 2020, 40(10): 1072–1080, 1087. DOI: 10.15918/j.tbit1001-0645.2019.206.
    [13]
    阳世清, 徐松林, 张彤. PTFE/Al反应材料制备工艺及性能 [J]. 国防科技大学学报, 2008, 30(6): 39–42, 62. DOI: 10.3969/j.issn.1001-2486.2008.06.009.

    YANG S Q, XU S L, ZHANG T. Preparation and performance of PTEF/Al reactive materials [J]. Journal of National University of Defense Technology, 2008, 30(6): 39–42, 62. DOI: 10.3969/j.issn.1001-2486.2008.06.009.
    [14]
    叶文君, 汪涛, 鱼银虎. 氟聚物基含能反应材料研究进展 [J]. 宇航材料工艺, 2022, 42(6): 19–23. DOI: 10.3969/j.issn.1007-2330.2012.06.003.

    YE W J, WANG T, YU Y H. Research progress of fluoropolymer-matrix energetic reactive materials [J]. Aerospace Materials & Technology, 2022, 42(6): 19–23. DOI: 10.3969/j.issn.1007-2330.2012.06.003.
    [15]
    RAFTENBERG M N, MOCK W JR, KIRBY G C. Modeling the impact deformation of rods of a pressed PTFE/Al composite mixture [J]. International Journal of Impact Engineering, 2008, 35(12): 1735–1744. DOI: 10.1016/j.ijimpeng.2008.07.041.
    [16]
    WANG H F, GENG B Q, GUO H G, et al. The effect of sintering and cooling process on geometry distortion and mechanical properties transition of PTFE/Al reactive materials [J]. Defence Technology, 2020, 16(3): 720–730. DOI: 10.1016/j.dt.2019.10.006.
    [17]
    FENG B, LI Y C, WU S Z, et al. A crack-induced initiation mechanism of Al-PTFE under quasi-static compression and the investigation of influencing factors [J]. Materials & Design, 2016, 108: 411–417. DOI: 10.1016/j.matdes.2016.06.125.
    [18]
    WANG H X, FANG X, FENG B, et al. Influence of temperature on the mechanical properties and reactive behavior of Al-PTFE under quasi-static compression [J]. Polymers, 2018, 10(1): 56. DOI: 10.3390/polym10010056.
    [19]
    任耶平, 刘睿, 陈鹏万, 等. Al/PTFE活性材料冲击载荷作用下响应特性研究 [J]. 爆炸与冲击, 2022, 42(6): 063103. DOI: 10.11883/bzycj-2021-0397.

    REN Y P, LIU R, CHEN P W, et al. A study of the response characteristics of Al/PTFE reactive materials under shock loading [J]. Explosion and Shock Waves, 2022, 42(6): 063103. DOI: 10.11883/bzycj-2021-0397.
    [20]
    于钟深, 方向, 高振儒, 等. TiH2含量对Al/PTFE准静态压缩力学性能和反应特性的影响 [J]. 含能材料, 2018, 26(8): 720–724. DOI: 10.11943/CJEM2017387.

    YU Z S, FANG X, GAO Z R, et al. Effect of TiH2 content on mechanical properties and reaction characteristics of Al/PTFE under quasi-static compression [J]. Chinese Journal of Energetic Materials, 2018, 26(8): 720–724. DOI: 10.11943/CJEM2017387.
    [21]
    杜宁, 张先锋, 熊玮, 等. 爆炸驱动典型活性材料能量释放特性研究 [J]. 爆炸与冲击, 2020, 40(4): 042301. DOI: 10.11883/bzycj-2019-0239.

    DU N, ZHANG X F, XIONG W, et al. Energy-release characteristics of typical reactive materials under explosive loading [J]. Explosion and Shock Waves, 2020, 40(4): 042301. DOI: 10.11883/bzycj-2019-0239.
    [22]
    汪德武, 任柯融, 江增荣, 等. 活性材料冲击释能行为研究进展 [J]. 爆炸与冲击, 2021, 41(3): 031408. DOI: 10.11883/bzycj-2020-0337.

    WANG D W, REN K R, JIANG Z R, et al. Shock-induced energy release behaviors of reactive materials [J]. Explosion and Shock Waves, 2021, 41(3): 031408. DOI: 10.11883/bzycj-2020-0337.
    [23]
    BENNETT L S, SORRELL F Y, SIMONSEN I K, et al. Ultrafast chemical reactions between nickel and aluminum powders during shock loading [J]. Applied Physics Letters, 1992, 61(5): 520–521. DOI: 10.1063/1.107874.
    [24]
    ZHANG X F, SHI A S, QIAO L, et al. Experimental study on impact-initiated characters of multifunctional energetic structural materials [J]. Journal of Applied Physics, 2013, 113(8): 083508. DOI: 10.1063/1.4793281.
    [25]
    XIONG W, ZHANG X F, TAN M T, et al. The energy release characteristics of shock-induced chemical reaction of Al/Ni composites [J]. The Journal of Physical Chemistry C, 2016, 120(43): 24551–24559. DOI: 10.1021/acs.jpcc.6b06530.
    [26]
    ÖZEN İ, ÇAVA K, GEDIKLI H, et al. Low-energy impact response of composite sandwich panels with thermoplastic honeycomb and reentrant cores [J]. Thin-Walled Structures, 2020, 156: 106989. DOI: 10.1016/j.tws.2020.106989.
    [27]
    KANG P, YOUN S K, LIM J H. Modification of the critical projectile diameter of honeycomb sandwich panel considering the channeling effect in hypervelocity impact [J]. Aerospace Science and Technology, 2013, 29(1): 413–425. DOI: 10.1016/j.ast.2013.04.011.
    [28]
    SIBEAUD J M, THAMIÉ L, PUILLET C. Hypervelocity impact on honeycomb target structures: experiments and modeling [J]. International Journal of Impact Engineering, 2008, 35(12): 1799–1807. DOI: 10.1016/j.ijimpeng.2008.07.037.
    [29]
    刘昕, 邓勇军, 彭芸, 等. 球形弹丸超高速斜撞击薄板的碎片云和侵彻特征仿真分析 [J]. 航天器环境工程, 2021, 38(6): 615–624. DOI: 10.12126/see.2021.06.002.

    LIU X, DENG Y J, PENG Y, et al. Simulation analysis of the characteristics of debris cloud and perforation caused by oblique hypervelocity impact of spherical projectile on a thin plate [J]. Spacecraft Environment Engineering, 2021, 38(6): 615–624. DOI: 10.12126/see.2021.06.002.
    [30]
    LIU P, LIU Y, ZHANG X. Internal-structure-model based simulation research of shielding properties of honeycomb sandwich panel subjected to high-velocity impact [J]. International Journal of Impact Engineering, 2015, 77: 120–133. DOI: 10.1016/j.ijimpeng.2014.11.004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(4)

    Article Metrics

    Article views (225) PDF downloads(95) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return