Citation: | ZHOU Rui, YUE Zengshen, XU Xuan, WANG Jianqiang, ZHANG Qiancheng. Dynamic responses of metallic hierarchical corrugated sandwich beams under shock loadings[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2023-0296 |
[1] |
RATHBUN H J, RADFORD D D, XUE Z, et al. Performance of metallic honeycomb-core sandwich beams under shock loading [J]. International Journal of Solids and Structures, 2006, 43(6): 1746–1763. DOI: 10.1016/j.ijsolstr.2005.06.079.
|
[2] |
YUE Z S, WANG X, HE C, et al. Elevated shock resistance of all-metallic sandwich beams with honeycomb-supported corrugated cores [J]. Composites Part B: Engineering, 2022, 242: 110102. DOI: 10.1016/j.compositesb.2022.110102.
|
[3] |
WANG X, HE C, YUE Z S, et al. Shock resistance of elastomer-strengthened metallic corrugated core sandwich panels [J]. Composites Part B: Engineering, 2022, 237: 109840. DOI: 10.1016/j.compositesb.2022.109840.
|
[4] |
REN J W, ZHOU Y L, QIANG L S, et al. Enhancing impact resistance of metallic foam core sandwich constructions through encasing high-strength fibrous composites [J]. Thin-Walled Structures, 2024, 196: 111546. DOI: 10.1016/j.tws.2023.111546.
|
[5] |
ZHANG D J, ZHAO Z Y, GAO H Y, et al. Dynamic response of sandwich panel attached with a double mass-spring-damping system to shallow-buried explosion: analytical modeling [J]. Science China Technological Sciences, 2024, 67(2): 568–586. DOI: 10.1007/s11431-023-2375-0.
|
[6] |
习会峰, 黄丽琴, 余同希, 等. 拓扑互锁结构研究现状及展望 [J]. 应用力学学报, 2023, 40(2): 241–252. DOI: 10.11776/j.issn.1000-4939.2023.02.001.
XI H F, HUANG L Q, YU T X, et al. A review on the studies of topological interlocking structures [J]. Chinese Journal of Applied Mechanics, 2023, 40(2): 241–252. DOI: 10.11776/j.issn.1000-4939.2023.02.001.
|
[7] |
YUE Z S, HAN B, WANG Z Y, et al. Data-driven multi-objective optimization of ultralight hierarchical origami-corrugation meta-sandwich structures [J]. Composite Structures, 2023, 303: 116334. DOI: 10.1016/j.compstruct.2022.116334.
|
[8] |
吴文旺, 夏热. 轻质点阵超结构设计及多功能力学性能调控方法 [J]. 力学进展, 2022, 52(3): 673–718. DOI: 10.6052/1000-0992-22-002.
WU W W, XIA R. Design of lightweight lattice meta-structures and approaches to manipulate their multi-functional mechanical properties [J]. Advances in Mechanics, 2022, 52(3): 673–718. DOI: 10.6052/1000-0992-22-002.
|
[9] |
CÔTÉ F, DESHPANDE V S, FLECK N A, et al. The compressive and shear responses of corrugated and diamond lattice materials [J]. International Journal of Solids and Structures, 2006, 43(20): 6220–6242. DOI: 10.1016/j.ijsolstr.2005.07.045.
|
[10] |
RADFORD D D, FLECK N A, DESHPANDE V S. The response of clamped sandwich beams subjected to shock loading [J]. International Journal of Impact Engineering, 2006, 32(6): 968–987. DOI: 10.1016/j.ijimpeng.2004.08.007.
|
[11] |
HAN B, YUE Z S, WU H, et al. Superior compressive performance of hierarchical origami-corrugation metallic sandwich structures based on selective laser melting [J]. Composite Structures, 2022, 300: 116181. DOI: 10.1016/j.compstruct.2022.116181.
|
[12] |
RUBINO V, DESHPANDE V S, FLECK N A. The collapse response of sandwich beams with a Y-frame core subjected to distributed and local loading [J]. International Journal of Mechanical Sciences, 2008, 50(2): 233–246. DOI: 10.1016/j.ijmecsci.2007.07.007.
|
[13] |
RUBINO V, DESHPANDE V S, FLECK N A. The dynamic response of end-clamped sandwich beams with a Y-frame or corrugated core [J]. International Journal of Impact Engineering, 2008, 35(8): 829–844. DOI: 10.1016/j.ijimpeng.2007.10.006.
|
[14] |
ZHANG P, CHENG Y S, LIU J, et al. Experimental and numerical investigations on laser-welded corrugated-core sandwich panels subjected to air blast loading [J]. Marine Structures, 2015, 40: 225–246. DOI: 10.1016/j.marstruc.2014.11.007.
|
[15] |
LIBOVE C, HUBKA R E. Elastic constants for corrugated-core sandwich plates [R]. Washington: National Advisory Committee for Aeronautics, 1951.
|
[16] |
LOK T S, CHENG Q H, JACOB B P. Equivalent stiffness parameters of truss-core sandwich panel [C]//Proceedings of the Ninth International Offshore and Polar Engineering Conference. Brest, France: International Society of Offshore and Polar Engineers, 1999: 292–298.
|
[17] |
BUANNIC N, CARTRAUD P, QUESNEL T. Homogenization of corrugated core sandwich panels [J]. Composite Structures, 2003, 59(3): 299–312. DOI: 10.1016/S0263-8223(02)00246-5.
|
[18] |
CHANG W S, VENTSEL E, KRAUTHAMMER T, et al. Bending behavior of corrugated-core sandwich plates [J]. Composite Structures, 2005, 70(1): 81–89. DOI: 10.1016/j.compstruct.2004.08.014.
|
[19] |
LU T J, ZHU G. The elastic constants of corrugated board panels [J]. Journal of Composite Materials, 2001, 35(20): 1868–1887. DOI: 10.1177/002199801772661498.
|
[20] |
PENG L X, LIEW K M, KITIPORNCHAI S. Analysis of stiffened corrugated plates based on the FSDT via the mesh-free method [J]. International Journal of Mechanical Sciences, 2007, 49(3): 364–378. DOI: 10.1016/j.ijmecsci.2006.08.018.
|
[21] |
SAMANTA A, MUKHOPADHYAY M. Finite element static and dynamic analyses of folded plates [J]. Engineering Structures, 1999, 21(3): 277–287. DOI: 10.1016/S0141-0296(97)90172-3.
|
[22] |
彭林欣, 严世涛, 杨绿峰. 波纹夹层板自由振动的移动最小二乘无网格法 [J]. 广西大学学报(自然科学版), 2010, 35(5): 703–710. DOI: 10.13624/j.cnki.issn.1001-7445.2010.05.016.
PENG L X, YAN S T, YANG L F. Free vibration analysis of corrugated-core sandwich plate structures by the moving-least square meshfree method [J]. Journal of Guangxi University (Natural Science Edition), 2010, 35(5): 703–710. DOI: 10.13624/j.cnki.issn.1001-7445.2010.05.016.
|
[23] |
NORDSTRAND T M. Parametric study of the post-buckling strength of structural core sandwich panels [J]. Composite Structures, 1995, 30(4): 441–451. DOI: 10.1016/0263-8223(94)00066-2.
|
[24] |
LU T J, CHEN C, ZHU G. Compressive behaviour of corrugated board panels [J]. Journal of Composite Materials, 2001, 35(23): 2098–2126. DOI: 10.1177/002199801772661371.
|
[25] |
VALDEVIT L, WEI Z, MERCER C, et al. Structural performance of near-optimal sandwich panels with corrugated cores [J]. International Journal of Solids and Structures, 2006, 43(16): 4888–4905. DOI: 10.1016/j.ijsolstr.2005.06.073.
|
[26] |
TILBROOK M T, RADFORD D D, DESHPANDE V S, et al. Dynamic crushing of sandwich panels with prismatic lattice cores [J]. International Journal of Solids and Structures, 2007, 44(18/19): 6101–6123. DOI: 10.1016/j.ijsolstr.2007.02.015.
|
[27] |
HOU S J, ZHAO S Y, REN L L, et al. Crashworthiness optimization of corrugated sandwich panels [J]. Materials & Design, 2013, 51: 1071–1084. DOI: 10.1016/j.matdes.2013.04.086.
|
[28] |
RUBINO V, DESHPANDE V S, FLECK N A. The dynamic response of clamped rectangular Y-frame and corrugated core sandwich plates [J]. European Journal of Mechanics-A/Solids, 2009, 28(1): 14–24. DOI: 10.1016/j.euromechsol.2008.06.001.
|
[29] |
ST-PIERRE L, DESHPANDE V S, FLECK N A. The low velocity impact response of sandwich beams with a corrugated core or a Y-frame core [J]. International Journal of Mechanical Sciences, 2015, 91: 71–80. DOI: 10.1016/j.ijmecsci.2014.02.014.
|
[30] |
ST-PIERRE L, FLECK N A, DESHPANDE V S. The dynamic indentation response of sandwich panels with a corrugated or Y-frame core [J]. International Journal of Mechanical Sciences, 2015, 92: 279–289. DOI: 10.1016/j.ijmecsci.2014.11.021.
|
[31] |
ZHANG P, LIU J, CHENG Y S, et al. Dynamic response of metallic trapezoidal corrugated-core sandwich panels subjected to air blast loading—an experimental study [J]. Materials & Design (1980-2015), 2015, 65: 221–230. DOI: 10.1016/j.matdes.2014.08.071.
|
[32] |
LIU K, KE L, SHA Y Y, et al. Dynamic response of laser-welded corrugated sandwich panels subjected to plane blast wave [J]. International Journal of Impact Engineering, 2022, 164: 104203. DOI: 10.1016/j.ijimpeng.2022.104203.
|
[33] |
WANG X, YUE Z S, XU X, et al. Ballistic impact response of elastomer-retrofitted corrugated core sandwich panels [J]. International Journal of Impact Engineering, 2023, 175: 104545. DOI: 10.1016/j.ijimpeng.2023.104545.
|
[34] |
WANG X, YU R P, ZHANG Q C, et al. Dynamic response of clamped sandwich beams with fluid-filled corrugated cores [J]. International Journal of Impact Engineering, 2020, 139: 103533. DOI: 10.1016/j.ijimpeng.2020.103533.
|
[35] |
YU R P, WANG X, ZHANG Q C, et al. Effects of sand filling on the dynamic response of corrugated core sandwich beams under foam projectile impact [J]. Composites Part B: Engineering, 2020, 197: 108135. DOI: 10.1016/j.compositesb.2020.108135.
|
[36] |
ZHANG P, CHENG Y S, LIU J, et al. Experimental study on the dynamic response of foam-filled corrugated core sandwich panels subjected to air blast loading [J]. Composites Part B: Engineering, 2016, 105: 67–81. DOI: 10.1016/j.compositesb.2016.08.038.
|
[37] |
KOOISTRA G W, DESHPANDE V, WADLEY H N G. Hierarchical Corrugated core sandwich panel concepts [J]. Journal of Applied Mechanics, 2007, 74(2): 259–268. DOI: 10.1115/1.2198243.
|
[38] |
FARROKHABADI A, TAGHIZADEH S A, MADADI H, et al. Experimental and numerical analysis of novel multi-layer sandwich panels under three point bending load [J]. Composite Structures, 2020, 250: 112631. DOI: 10.1016/j.compstruct.2020.112631.
|
[39] |
GRYGOROWICZ M, PACZOS P, WITTENBECK L, et al. Experimental three-point bending of sandwich beam with corrugated core [J]. AIP Conference Proceedings, 2015, 1648(1): 800002. DOI: 10.1063/1.4913003.
|
[40] |
WITTENBECK L, GRYGOROWICZ M, PACZOS P. Numerical analysis of sandwich beam with corrugated core under three-point bending [J]. AIP Conference Proceedings, 2015, 1648(1): 800007. DOI: 10.1063/1.4913008.
|
[41] |
LAKES R. Materials with structural hierarchy [J]. Nature, 1993, 361(6412): 511–515. DOI: 10.1038/361511a0.
|
[42] |
FRATZL P, WEINKAMER R. Nature’s hierarchical materials [J]. Progress in Materials Science, 2007, 52(8): 1263–1334. DOI: 10.1016/j.pmatsci.2007.06.001.
|
[43] |
GIBSON L J. Biomechanics of cellular solids [J]. Journal of Biomechanics, 2005, 38(3): 377–399. DOI: 10.1016/j.jbiomech.2004.09.027.
|
[44] |
搜狗百科. 建筑艺术: 建筑的文化与审美价值 [EB/OL]. [2023-08-17]. https://baike.sogou.com/v64536923.htm?ch=zhihu.topic.
|
[45] |
RADFORD D D, DESHPANDE V S, FLECK N A. The use of metal foam projectiles to simulate shock loading on a structure [J]. International Journal of Impact Engineering, 2005, 31(9): 1152–1171. DOI: 10.1016/j.ijimpeng.2004.07.012.
|
[46] |
RADFORD D D, MCSHANE G J, DESHPANDE V S, et al. The response of clamped sandwich plates with metallic foam cores to simulated blast loading [J]. International Journal of Solids and Structures, 2006, 43(7/8): 2243–2259. DOI: 10.1016/j.ijsolstr.2005.07.006.
|
[47] |
YAHAYA M A, RUAN D, LU G, et al. Response of aluminium honeycomb sandwich panels subjected to foam projectile impact—an experimental study [J]. International Journal of Impact Engineering, 2015, 75: 100–109. DOI: 10.1016/j.ijimpeng.2014.07.019.
|
[48] |
JING L, WANG Z H, ZHAO L M. The dynamic response of sandwich panels with cellular metal cores to localized impulsive loading [J]. Composites Part B: Engineering, 2016, 94: 52–63. DOI: 10.1016/j.compositesb.2016.03.035.
|
[49] |
DESHPANDE V S, FLECK N A. Isotropic constitutive models for metallic foams [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(6/7): 1253–1283. DOI: 10.1016/S0022-5096(99)00082-4.
|
[50] |
FLECK N A, DESHPANDE V S. The resistance of clamped sandwich beams to shock loading [J]. Journal of Applied Mechanics, 2004, 71(3): 386–401. DOI: 10.1115/1.1629109.
|