Leng Zhen-dong, Lu Wen-bo, Chen Ming, Yan Peng, Hu Ying-guo. Improved calculation model for the size of crushed zone around blasthole[J]. Explosion And Shock Waves, 2015, 35(1): 101-107. doi: 10.11883/1001-1455(2015)01-0101-07
Citation: WU Shuogang, DU Chengxin, ZHOU Feng, GAO Guangfa, LYU Wenzheng, CHEN Xi. Damage characteristic of target penetrated by WF/Zr-MG and 93W rods[J]. Explosion And Shock Waves, 2024, 44(4): 043302. doi: 10.11883/bzycj-2023-0312

Damage characteristic of target penetrated by WF/Zr-MG and 93W rods

doi: 10.11883/bzycj-2023-0312
  • Received Date: 2023-08-28
  • Rev Recd Date: 2024-01-22
  • Available Online: 2024-01-23
  • Publish Date: 2024-04-07
  • In order to compare and analyze the characteristic and mechanism of damaging on 45 steel target plate penetrated by the WF/Zr-MG and 93W rod, a penetration experiment under hypervelocity impact was carried out. The analysis of penetration was performed at both macro and micro levels, in which the macroscopic quantitative characterization quantity was studied by equivalent diameter of reamer, and the microscopic morphology, phase transition and hardness characteristics of the target plate were obtained by scanning electron microscopy, optical microscope, X-ray diffraction and microhardness tester.The experimental results indicate that the WF/Zr-MG rod completely penetrated the target plate, while the 93W rod remained in the target plate. The armor-piercing capacity of WF/Zr-MG rod is higher than that of 93W rod with equivalent reaming diameter of 16.7 mm and 18.4 mm respectively, and the former is 10.18% lower than the latter. From the microscopic perspective, the aspect ratios of the fine grain layer after penetrated by the WF/Zr-MG rod and the 93W rod are 4.5 and 7.3, respectively. In addition, the width of the high-hardness layer are 10.2 mm and 8.9 mm, with Vickers hardness HV peaks at 249 and 287, respectively. The wider high-hardness layer observed in the former case can be attributed to the continuous burning of the Zr-based amorphous alloy during the penetration process, resulting in a larger temperature affected zone and consequently a greater area of hardness enhancement. On the other hand, in the latter case, the strength of the target plate during penetration is significantly higher due to the buckling and backflow of the WF/Zr-MG rod, while the 93W alloy core exhibits a "mushroom head" phenomenon. This reduces extrusion deformation on the target plate, thereby weakening the effect of grain elongation, reducing the increase in hardness peak value, and minimizing energy loss per unit length of the target plate. Ultimately, it enhances the armor-piercing capability of the WF/Zr-MG rod.
  • [1]
    WANG H K, LI Z Z, ZHANG Z H, et al. Microstructure evolution of 6252 armor steel under hypervelocity impact [J]. International Journal of Impact Engineering, 2022, 170(12): 104356. DOI: 10.1016/j.ijimpeng.2022.104356.
    [2]
    HE Y, ZHANG Z, YANG S, et al. Deformation and fracture mechanism of Ti-6Al-4V target at high and hyper velocity impact [J]. International Journal of Impact Engineering, 2022, 169(12): 104312. DOI: 10.1016/j.ijimpeng.2022.104312.
    [3]
    ZHENG Z, ZHU D, DING X, et al. Hypervelocity impact damage and microstructure evolution of woven Ti6Al4V fabric reinforced aluminum matrix composites [J]. Materials & Design, 2016, 108(10): 86–92. DOI: 10.1016/j.matdes.2016.06.075.
    [4]
    ZHOU F, DU C X, CHENG C, et al. Penetration performance and fragmentation mechanism behind target of tungsten fibre/zirconium-based bulk metallic glass matrix composite rod [J]. International Journal of Refractory Metals and Hard Materials, 2023, 112(4): 106160. DOI: 10.1016/j.ijrmhm.2023.106160.
    [5]
    李名锐, 冯娜, 蔡青山, 等. 93W杆式弹超高速撞击多层Q345钢靶毁伤及微观分析 [J]. 爆炸与冲击, 2021, 41(2): 021408. DOI: 10.11883/bzycj-2020-0303.

    LI M R, FENG N, CAI Q S, et al. Damage of a multi-layer Q345 target under hypervelocity impact of a rod-shaped 93W projectile [J]. Explosion And Shock Waves, 2021, 41(2): 021408. DOI: 10.11883/bzycj-2020-0303.
    [6]
    高华, 熊超, 殷军辉. 弹丸侵彻多层异质复合靶板中装甲钢变形细观和微观机理研究 [J]. 兵工学报, 2018, 39(8): 1565–1575. DOI: 10.3969/j.issn.1000-1093.2018.08.013.

    GAO H, XIONG C, YIN J H. Research on macroscopic and microscopic mechanisms of deformation of armor steel in multilayer heterogeneous compositetarget subjected to projectile [J]. Acta Armamentarii, 2018, 39(8): 1565–1575. DOI: 10.3969/j.issn.1000-1093.2018.08.013.
    [7]
    罗荣梅, 黄德武, 杨明川, 等. 杆式穿甲弹侵彻靶板时弹坑表面熔化快凝层研究 [J]. 兵工学报, 2015, 36(7): 1167–1175. DOI: 10.3969/j.issn.1000-1093.2015.07.003.

    LUO R M, HUANG D W, YANG M C, et al. Research on melted and rapidly solidified layer on the surface of crater penetrated by long tungsten rod [J]. Acta Armamentarii, 2015, 36(7): 1167–1175. DOI: 10.3969/j.issn.1000-1093.2015.07.003.
    [8]
    邹敏明, 郭珉, 柴东升, 等. 钨丝增强锆基非晶材料弹芯侵彻弹坑特征研究 [J]. 兵器材料科学与工程, 2021, 44(4): 56–60. DOI: 10.14024/j.cnki.1004-244x.20210514.009.

    ZOU M M, GUO M, CHAI D S, et al. Morphological characteristics of penetration crater of tungsten wire reinforced zirconium based amorphous matrix composite [J]. Ordnance Material Science and Engineering, 2021, 44(4): 56–60. DOI: 10.14024/j.cnki.1004-244x.20210514.009.
    [9]
    侯杰, 陈曦, 杜忠华, 等. W-Cu-Zr基非晶粉末药型罩射孔弹侵彻行为研究 [J]. 兵器材料科学与工程, 2022, 45(4): 12–17. DOI: 10.14024/j.cnki.1004-244x.20220701.004.

    HOU J, CHEN X, DU Z H, et al. Penetration behavior of W-Cu-Zr amorphous powder liner [J]. Ordnance Material Science and Engineering, 2022, 45(4): 12–17. DOI: 10.14024/j.cnki.1004-244x.20220701.004.
    [10]
    晁振龙, 姜龙涛, 陈圣朋, 等. 55%B4C/7075Al复合材料抗弹性能与损伤行为研究 [J]. 兵器材料科学与工程, 2020, 43(3): 1–7. DOI: 10.14024/j.cnki.1004-244x.20200115.005.

    CHAO Z L, JIANG L T, Chen S P , et al. Ballistic property and damage behavior of 55% B4C/7075Al composites [J]. Ordnance Material Science and Engineering, 2020, 43(3): 1–7. DOI: 10.14024/j.cnki.1004-244x.20200115.005.
    [11]
    黄竣皓, 王琳, 刘小品, 等. Ti-6321钛合金力学性能和抗弹性能 [J]. 兵工学报, 2021, 42(1): 124–132. DOI: 10.3969/j.issn.1000-1093.2021.01.014.

    HUANG J H, WANG L, LIU X P, et al. Mechanical properties and ballistic performance of Ti-6321 alloy [J]. Acta Armamentarii, 2021, 42(1): 124–132. DOI: 10.3969/j.issn.1000-1093.2021.01.014.
    [12]
    李明兵, 王新南, 商国强, 等. 双态组织TC32钛合金的抗弹性能及损伤机制 [J]. 中国有色金属学报, 2021, 31(2): 365–372. DOI: 10.11817/j.ysxb.1004.0609.2021-37761.

    LI M B, WANG X N, SHANG G Q, et al. Ballistic properties and failure mechanisms of TC32 titanium alloy with bimodal microstructure [J]. The Chinese Journal of Nonferrous Metals, 2021, 31(2): 365–372. DOI: 10.11817/j.ysxb.1004.0609.2021-37761.
    [13]
    苏冠龙, 龚煦, 李玉龙, 等. TC4在动态载荷下的剪切行为研究 [J]. 爆炸与冲击, 2015, 35(4): 527–535. DOI: 10.11883/1001-1455(2015)04-0527-09.

    SU G L, GONG X, LI Y L, et al. Shear behavior of TC4 alloy under dynamic loading [J]. Explosion and Shock Waves, 2015, 35(4): 527–535. DOI: 10.11883/1001-1455(2015)04-0527-09.
    [14]
    张博. 高速撞击条件下镁合金损伤行为及变形机制研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020: 1–25. DOI: 10.27061/d.cnki.ghgdu.2020.001729.
    [15]
    陈海华, 张先锋, 刘闯, 等. 高熵合金冲击变形行为研究进展 [J]. 爆炸与冲击, 2021, 41(4): 041402. DOI: 10.11883/bzycj-2020-0414.

    CHEN H H, ZHANG X F, LIU C, et al. Research progress on impact deformation behavior of high-entropy alloys [J]. Explosion and Shock Waves, 2021, 41(4): 041402. DOI: 10.11883/bzycj-2020-0414.
    [16]
    高玉魁, 陶雪菲. 高速冲击表面处理对金属材料力学性能和组织结构的影响 [J]. 爆炸与冲击, 2021, 41(4): 041401. DOI: 10.11883/bzycj-2020-0342.

    GAO Y K, TAO X F. A review on the influences of high speed impact surface treatments on mechanical properties and microstructures of metallic materials [J]. Explosion and Shock Waves, 2021, 41(4): 041401. DOI: 10.11883/bzycj-2020-0342.
    [17]
    夏龙祥. 钨纤维增强块体金属非晶复合材料侵彻行为研究 [D]. 南京: 南京理工大学, 2014: 11–22. DOI: 10.7666/d.Y2520745.
    [18]
    ZHOU F, DU C X, DU Z, et al. Penetration gain study of a tungsten-fiber/zr-based metallic glass matrix Composite [J]. Crystals, 2022, 12(2): 284. DOI: 10.3390/cryst12020284.
    [19]
    WALKER J. Hypervelocity penetration modeling: momentum vs. energy and energy transfer mechanisms [J]. International Journal of Impact Engineering, 2001, 26(1-10): 809–822. DOI: 10.1016/S0734-743X(01)00134-8.
    [20]
    ELSHENAWY T, ELBEIH A, LI Q. Influence of target strength on the penetration depth of shaped charge jets into RHA targets [J]. International Journal of Mechanical Sciences, 2018, 136: 234–242. DOI: 10.1016/j.ijmecsci.2017.12.041.
    [21]
    HALL E O. The deformation and ageing of mild steel: III discussion of results [C]// Proceedings of the Physical Society. Section B. London, UK: Institute of Physics and the Physical Society, 1951: 747. DOI: 10.1088/0370-1301/64/9/303.
    [22]
    陈昊, 陶钢. 铜射流侵彻后45#钢穿孔处的微观组织分层研究 [J]. 南京理工大学学报, 2011, 35(4): 498–501. DOI: 10.14177/j.cnki.32-1397n.2011.04.001.

    CHEN H, TAO G. Microstructure’s delamination on bore of 45# steel penetrated by copper jet [J]. Journal of Nanjing University of Science and Technology, 2011, 35(4): 498–501. DOI: 10.14177/j.cnki.32-1397n.2011.04.001.
    [23]
    胡昌明, 贺红亮, 胡时胜. 45号钢的动态力学性能研究 [J]. 爆炸与冲击, 2003, 23(2): 188–192.

    HU C M, HE H L, HU S S. Study on dynamic mechanical properties of No. 45 steel [J]. Explosion And Shock Waves, 2003, 23(2): 188–192.
    [24]
    尚春明, 施冬梅, 张云峰等. Zr基非晶合金的燃烧释能特性[J]. 含能材料, 2020, 28(6): 564–568. DOI: 10.11943/CJEM2019219.

    SHANG C M, SHI D M, ZHANG Y F, at al. Combustion and energy release characteristics of zr-based amorphous alloys [J]. Chinese Journal of Energetic Materials, 2020, 28(6): 564–568. DOI: 10.11943/CJEM2019219.
    [25]
    LI D F, DONG H Y, WU K M, at al. Effects of cooling after rolling and heat treatment on microstructures and mechanical properties of Mo-Ti microalloyed medium carbon steel [J]. Materials Science & Engineering A, 2020, 773(C): 138808. DOI: 10.1016/j.msea.2019.138808.
  • Relative Articles

    [1]YANG Kexu, HE Chenglong, HUO Ziyi, MAO Xiang. Analysis of the enhancement effect of UHMWPE backplate thickness on the penetration resistance of aluminum composite panels[J]. Explosion And Shock Waves, 2024, 44(2): 023103. doi: 10.11883/bzycj-2023-0176
    [2]WU Yiding, WANG Xiaodong, YU Yilei, MA Minghui, LU Wencheng, GAO Guangfa. Affection of fiber backboard structure on the penetration and crushing resistance of B4C ceramic composite armor[J]. Explosion And Shock Waves, 2023, 43(9): 091411. doi: 10.11883/bzycj-2023-0133
    [3]WANG Kailei, LI Mingjing, DONG Leiting. Simulation on penetration of a 12.7-mm projectile into steel targets with different strengths[J]. Explosion And Shock Waves, 2022, 42(8): 083304. doi: 10.11883/bzycj-2021-0336
    [4]WANG Xiaodong, YU Yilei, JIANG Zhaoxiu, MA Minghui, GAO Guangfa. Dynamic fragmentation and failure of the hard core of a 12.7 mm API projectile against SiC/6061T6Al composite armor with various impact velocities[J]. Explosion And Shock Waves, 2022, 42(2): 023303. doi: 10.11883/bzycj-2021-0181
    [5]LIN Kunfu, ZHANG Xianfeng, CHEN Haihua, XIONG Wei, LIU Chuang, ZHANG Quanxiao. Penetration behaviors of Hf-based amorphous alloy jacketed rods[J]. Explosion And Shock Waves, 2021, 41(2): 023301. doi: 10.11883/bzycj-2020-0181
    [6]TAN Mengting, ZHANG Xianfeng, BAO Kuo, WEI Haiyang, HAN Guoqing. Characteristics of interface defeat and penetration during the impact between a ceramic armor and a long-rod projectile[J]. Explosion And Shock Waves, 2021, 41(3): 031406. doi: 10.11883/bzycj-2020-0338
    [7]YU Yilei, JIANG Zhaoxiu, WANG Xiaodong, DU Chengxin, DU Zhonghua, GAO Guangfa. Research on ceramic fragmentation behavior of lightweight ceramic/metal composite armor during vertical penetration[J]. Explosion And Shock Waves, 2021, 41(11): 113301. doi: 10.11883/bzycj-2021-0134
    [8]LIU Sai, ZHANG Weigui, LYU Zhenhua. An FEM-SPH coupled model for simulating penetration of armor-piercing bullets into ceramic composite armors and glass composite armors[J]. Explosion And Shock Waves, 2021, 41(1): 014201. doi: 10.11883/bzycj-2020-0069
    [9]LI Dian, HOU Hailiang, ZHU Xi, CHEN Changhai, LI Mao. A theoretical model for the evaluation of protective capability of a sandwich bulkhead structure in the close range of warhead explosion[J]. Explosion And Shock Waves, 2019, 39(2): 022201. doi: 10.11883/bzycj-2017-0351
    [10]ZHANG Yuanhao, CHENG Zhongqing, HOU Hailiang, LI Yanru. Influence of structural interspace on anti-penetration performance of sandwich composite armor system[J]. Explosion And Shock Waves, 2019, 39(12): 125104. doi: 10.11883/bzycj-2019-0270
    [11]WANG Weizhan, ZHAO Taiyong, FENG Shunshan, YANG Baoliang, LI Xiaojun, CHEN Zhigang. Numerical simulation study on penetration of a 12.7 mm kinetic energy bullet into a composite armor[J]. Explosion And Shock Waves, 2019, 39(12): 123301. doi: 10.11883/bzycj-2018-0425
    [12]ZHANG Peiwen, LI Shiqiang, WANG Zhihua, ZHAO Longmao. Dynamic response of sandwich beam with foldable core under blast loading[J]. Explosion And Shock Waves, 2018, 38(1): 140-147. doi: 10.11883/bzycj-2017-0017
    [13]Tan Mengting, Zhang Xianfeng, Ge Xiankun, Liu Chuang, Xiong Wei. Theoretical model of interface defeat/penetration transition velocity of ceramic armor impacted by long-rod projectile[J]. Explosion And Shock Waves, 2017, 37(6): 1093-1100. doi: 10.11883/1001-1455(2017)06-1093-08
    [14]Hou Hai-liang, Zhang Cheng-liang, Li Mao, Hu Nian-ming, Zhu Xi. Damage characteristics of sandwich bulkhead under the impact of shock and high-velocity fragments[J]. Explosion And Shock Waves, 2015, 35(1): 116-123. doi: 10.11883/1001-1455(2015)01-0116-08
    [15]Chi Run-qiang, Ahmad Serjouei, Fan Feng, Idapalapati Sridhar. Geometrical effects on performances of ceramic/metal armors impacted by projectiles[J]. Explosion And Shock Waves, 2014, 34(5): 594-600. doi: 10.11883/1001-1455(2014)05-0594-07
    [16]ZHANG Wei, HU De-an, HAN Xu, TAN Zhu-hua. Three-dimensionalSPHanalysisofimpactresponses ofceramic/metalcompositearmors[J]. Explosion And Shock Waves, 2011, 31(4): 373-379. doi: 10.11883/1001-1455(2011)04-0373-07
    [17]CHEN Chang-hai, ZHU Xi, HOU Hai-liang, WANG Tian-qiong. Experimentalstudyoncompositearmorstructureofwarshiptopside againstkineticarmor-piercing[J]. Explosion And Shock Waves, 2011, 31(1): 11-18. doi: 10.11883/1001-1455(2011)01-0011-08
    [18]JIANG Da-zhi, GUO Yang, LI Chang-liang, XIAO Jia-yu. Experimental investigation on response of two-core sandwich composite structures under transverse impact[J]. Explosion And Shock Waves, 2009, 29(6): 590-595. doi: 10.11883/1001-1455(2009)06-0590-06
    [19]ZHAO Hui-ying, SHEN Zhao-wu, LIU Tian-sheng. On the integrated technology of reactive armors with composite ceramic armors[J]. Explosion And Shock Waves, 2006, 26(1): 21-26. doi: 10.11883/1001-1455(2006)01-0021-06
  • Cited by

    Periodical cited type(50)

    1. 祝飞翔,高飞,刘晨康,邓树新. 带壳装药在混凝土中爆炸毁伤效果的影响规律研究. 振动与冲击. 2025(05): 278-288 .
    2. 雷涛,康普林,叶海旺,李宁,王其洲. 柱状药包爆破过程中应力波叠加与岩体裂隙分布的方向效应研究. 岩石力学与工程学报. 2024(02): 399-411 .
    3. 孙鹏昌,杨广栋,卢文波,范勇,孟海利,薛里. 考虑岩体破坏分区的岩石爆破爆炸荷载历程研究. 爆炸与冲击. 2024(03): 171-186 . 本站查看
    4. 王洪刚,贾永胜,余浩天,罗鹏,黄炳林,周俊汝. 基于根底控制的深孔台阶爆破超深优选方法. 爆破. 2024(01): 44-50 .
    5. 叶志伟,陈明,杨建华,姚池,张小波,周创兵. 隧道爆破炮孔堵塞结构运动规律与长度优化研究. 中国公路学报. 2024(08): 204-215 .
    6. 崔雪姣,李启月,冷振东,姚颖康,周建敏,赵明生. 基于能量传输效率控制的现场混装炸药与岩石匹配方法. 爆破. 2024(03): 9-15 .
    7. 杨国梁,邹泽华,张赫,李峰. 径向不耦合装药爆破下页岩的动态应变分布及损伤分形特征. 爆破. 2024(03): 26-32+42 .
    8. 李亮,陈嘉骏,赵炼恒,何可培,胡世红,李华隆. 基于统一强度理论的深埋隧道围岩爆破致裂范围评估(英文). Journal of Central South University. 2024(07): 2341-2364 .
    9. 阿比尔的,胡尊镕,傅林,韩亚峰,刘明维. CO_2相变致裂岩石的损伤范围的计算及影响因素研究. 爆破器材. 2024(06): 41-49 .
    10. 刘树新,庄宇,戴谦君,安帅,曹飞. 盲天井中深孔掏槽爆破布孔优化及围岩损伤数值分析. 金属矿山. 2024(12): 44-51 .
    11. 蓝亦辉. 临近爆破处既有建筑物振动响应分析. 福建建材. 2023(01): 65-70 .
    12. 冷振东,高启栋,卢文波,陈明,周桂松,范勇. 岩石钻孔爆破能量调控理论与应用技术研究进展. 金属矿山. 2023(05): 64-76 .
    13. 楼晓明,陈诗伟,李广斌,牛明远,林日宗,姚炳金. 耦合装药条件下不同孔径孔壁冲击压力的阶段特征. 爆炸与冲击. 2023(08): 168-181 . 本站查看
    14. 蒋宏杰,卢文波,王高辉,刘义佳,王洋. 大体积混凝土水下接触爆炸破坏分区特征分析. 爆炸与冲击. 2023(10): 15-29 . 本站查看
    15. 章彬彬,程金明,占汪妹,赵东波,廖述能,郑中华. 不耦合装药下炮孔—空孔距离对预裂爆破效果的影响探究. 工程爆破. 2023(05): 79-85 .
    16. 聂根良,程晓红,周文海,胡才智,凌晓. 冲击载荷作用下炮孔近区节理岩体的动力响应. 矿业研究与开发. 2023(11): 72-80 .
    17. 冷振东,周桂松,刘令,曹进军,侯国荣. 高原大断面隧道现场混装爆破关键技术研究. 地下空间与工程学报. 2023(S2): 890-900 .
    18. 李芳涛,胡志平,陈南南,张永辉,安学旭. 爆破荷载作用下隧道围岩裂隙范围计算方法研究. 振动与冲击. 2022(08): 260-269 .
    19. 周桂松,钟冬望. 绿色爆破的爆炸能量转化机制. 金属矿山. 2022(07): 35-41 .
    20. 魏东,陈明,卢文波,李康贵,王高辉. 岩体性能变化条件下台阶爆破根底的产生机制研究. 岩土力学. 2022(S1): 490-500 .
    21. 马力,徐甜新,李克民,孙进步,刘宇,张奇峰,薛飞,靳新宇,李瑞行,王恒荣. 露天煤矿抛掷爆破技术研究现状及发展趋势. 煤炭工程. 2022(09): 134-141 .
    22. 周文海,胡才智,包娟,郑俊杰,梁瑞. 含节理岩体爆破过程中应力波传播与裂纹扩展的数值研究. 力学学报. 2022(09): 2501-2512 .
    23. 李桐,陈明,叶志伟,卢文波,魏东,郑祥. 混凝土含水裂隙中爆炸压力传播的模型试验研究. 岩土力学. 2022(S2): 205-213 .
    24. 孙鹏昌,卢文波,杨招伟,孟海利,薛里. 白鹤滩坝肩边坡开挖爆破损伤预测研究. 水力发电学报. 2022(10): 30-41 .
    25. 李永祺,梁正召,钱希坤,刘红波. 应力波形对岩石爆生裂纹扩展机制影响的数值模拟. 工程科学学报. 2022(12): 2057-2068 .
    26. 梁瑞,李生荣,包娟,周文海. 高地应力下岩体的爆破损伤及能量特性. 高压物理学报. 2022(06): 127-138 .
    27. 周春国,王荣富,刘兴堂,封磊,刘刚. 地下厂房岩壁梁爆破松弛试验及稳定性影响研究. 岩土工程技术. 2022(06): 502-506 .
    28. 魏东,陈明,叶志伟,卢文波,李桐. 基于应变率相关动力特性的岩体爆破破坏区范围研究. 工程科学与技术. 2021(01): 67-74 .
    29. 尹岳降,夏文俊,卢文波,刘建成,陈明,于永军. 灰岩矿爆破开采岩粉成因及其控制研究. 工程爆破. 2021(06): 44-51 .
    30. 梁瑞,周文海,余建平,李珍宝,杜超飞,王敦繁. 冲击载荷作用下岩体拉-压损伤破坏的边坡抛掷爆破模拟. 高压物理学报. 2019(01): 82-91 .
    31. 费鸿禄,苏强,蒋安俊,洪陈超. 爆破载荷下隧道围岩破坏裂隙范围研究. 爆破器材. 2019(02): 51-56 .
    32. 梁瑞,俞瑞利,周文海,陈鹏辉,陈必港. 基于LS-DYNA模拟的准直眼掏槽爆破技术研究. 有色金属工程. 2019(08): 101-107 .
    33. 岳志坤,夏文俊,李福千,陈明,尹岳降,聂攀. 大型停车场岩石基坑快速开挖技术. 建筑施工. 2019(12): 2114-2116 .
    34. 李俊平,叶浩然,侯先芹. 高应力下硬岩巷道掘进端面钻孔爆破卸压动态模拟. 安全与环境学报. 2018(03): 962-967 .
    35. 冷振东,刘亮,周旺潇,周桂松,杜华善. 起爆位置对台阶爆破爆堆形态影响的离散元分析. 爆破. 2018(02): 50-55+100 .
    36. 钟权,冷振东,彭峥,刘放. 节理岩体隧洞开挖爆破损伤特性及爆破方案研究. 长江科学院院报. 2018(02): 89-94 .
    37. 涂书芳,冷振东. 空气间隔装药爆破损伤特性数值模拟研究. 水电与新能源. 2018(02): 16-20+44 .
    38. 李启月,吴正宇,黄武林. 直眼掏槽空孔效应的计算模型改进与分析. 采矿与安全工程学报. 2018(05): 925-930 .
    39. 杨跃宗,邵珠山,熊小锋,米俊峰. 岩石爆破中径向和轴向不耦合装药的对比分析. 爆破. 2018(04): 26-33+146 .
    40. 费鸿禄,洪陈超. 应力波和爆生气体共同作用下裂隙区范围研究. 爆破. 2017(01): 33-36+107 .
    41. 冷振东,卢文波,范勇,陈明,严鹏. 侧向起爆条件下的爆炸能量分布及其对破岩效果的影响. 爆炸与冲击. 2017(04): 661-669 . 本站查看
    42. 张帆,林从谋,肖绍清,温智捷,殷榕鹏,杨宾. 地铁盾构孤石预爆破破碎范围计算方法. 工程爆破. 2017(01): 34-38 .
    43. 吴发名,刘勇林,李洪涛,姚强. 基于原生节理统计和爆破裂纹模拟的堆石料块度分布预测. 岩石力学与工程学报. 2017(06): 1341-1352 .
    44. 曲艳东,孙从煌,章文姣,孔祥清,马石磊. 深孔间隔装药爆破对不同孔壁介质的影响. 工程爆破. 2016(03): 6-14 .
    45. 吴亮,鲁帅,许锋,蔡路军,曾国伟. 矿岩爆破破碎机理、块度分布与测量技术研究动态. 金属矿山. 2016(07): 47-53 .
    46. 陈鹏辉,雷涛. 基于ALE算法的单孔台阶爆破数值模拟研究. 有色金属(矿山部分). 2016(01): 72-76 .
    47. 刘亮,卢文波,陈明,严鹏,王高辉. 钻爆开挖条件下岩体临界破碎状态的损伤阈值统计研究. 岩石力学与工程学报. 2016(06): 1133-1140 .
    48. 刘亮,郑炳旭,陈明,宋锦泉,王高辉,严鹏. 起爆方式对台阶爆破根底影响的数值模拟分析. 爆破. 2015(03): 49-54+78 .
    49. 楼晓明,陈鹏辉,周文海. 基于岩粉分段装药的爆破技术研究. 有色金属(矿山部分). 2015(06): 65-69 .
    50. Leng Zhendong,Lu Wenbo,Chen Ming,Yan Peng,Hu Yingguo. A new theory of rock-explosive matching based on the reasonable control of crushed zone. Engineering. 2014(06): 32-38 .

    Other cited types(45)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (257) PDF downloads(133) Cited by(95)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return