Citation: | HE Yuanpeng, WANG Lingfeng, YANG Qiusong, LI Zhejian, HAO Hong, CHEN Wensu. Impact response of TPS folded sandwich structure[J]. Explosion And Shock Waves, 2024, 44(4): 043103. doi: 10.11883/bzycj-2023-0315 |
[1] |
ABBADI A, KOUTSAWA Y, CARMASOL A, et al. Experimental and numerical characterization of honeycomb sandwich composite panels [J]. Simulation Modelling Practice and Theory, 2009, 17(10): 1533–1547. DOI: 10.1016/j.simpat.2009.05.008.
|
[2] |
REJAB M R M, CANTWELL W J. The mechanical behaviour of corrugated-core sandwich panels [J]. Composites Part B: Engineering, 2013, 47: 267–277. DOI: 10.1016/j.compositesb.2012.10.031.
|
[3] |
HEIMBS S, CICHOSZ J, KLAUS M, et al. Sandwich structures with textile-reinforced composite foldcores under impact loads [J]. Composite Structures, 2010, 92(6): 1485–1497. DOI: 10.1016/j.compstruct.2009.11.001.
|
[4] |
YOO S H, CHANG S H, SUTCLIFFE M P F. Compressive characteristics of foam-filled composite egg-box sandwich panels as energy absorbing structures [J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(3): 427–434. DOI: 10.1016/j.compositesa.2009.11.010.
|
[5] |
WANG B, WU L, MA L, et al. Mechanical behavior of the sandwich structures with carbon fiber-reinforced pyramidal lattice truss core [J]. Materials & Design, 2010, 31(5): 2659–2663. DOI: 10.1016/j.matdes.2009.11.061.
|
[6] |
MA Q, REJAB M R M, SIREGAR J P, et al. A review of the recent trends on core structures and impact response of sandwich panels [J]. Journal of Composite Materials, 2021, 55(18): 2513–2555. DOI: 10.1177/0021998321990734.
|
[7] |
廖就, 李志刚, 梁方正, 等. 高共面/异面抗冲击承载能力的新型蜂窝设计及吸能评估 [J]. 爆炸与冲击, 2021, 41(8): 083103. DOI: 10.11883/bzycj-2020-0262.
LIAO J, LI Z G, LIANG F Z, et al. Design and evaluation of new honeycomb configurations with high in-plane /out-of-plane loading-carrying capacity under impact [J]. Explosion and Shock Waves, 2021, 41(8): 083103. DOI: 10.11883/bzycj-2020-0262.
|
[8] |
TOWNSEND S, ADAMS R, ROBINSON M, et al. 3D printed origami honeycombs with tailored out-of-plane energy absorption behavior [J]. Materials & Design, 2020, 195: 083103. DOI: 10.1016/j.matdes.2020.108930.
|
[9] |
PYDAH A, BATRA R C. Crush dynamics and transient deformations of elastic-plastic Miura-ori core sandwich plates [J]. Thin-Walled Structures, 2017, 115: 311–322. DOI: 10.1016/j.tws.2017.02.021.
|
[10] |
MA J, DAI H, CHAI S, et al. Energy absorption of sandwich structures with a kirigami-inspired pyramid foldcore under quasi-static compression and shear [J]. Materials & Design, 2021, 206: 083103. DOI: 10.1016/j.matdes.2021.109808.
|
[11] |
ZHAI Z, WANG Y, JIANG H. Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9): 2032–2037. DOI: 10.1073/pnas.1720171115.
|
[12] |
FANG H, LI S, JI H, et al. Dynamics of a bistable Miura-origami structure [J]. Physical Review E, 2017, 95(5): 052211. DOI: 10.1103/PhysRevE.95.052211.
|
[13] |
邱海, 方虹斌, 徐鉴. 多稳态串联折纸结构的非线性动力学特性 [J]. 力学学报, 2019, 51(4): 1110–1121. DOI: 10.6052/0459-1879-19-115.
QIU H, FANG H B, XU J. Nonlinear dynamical characteristics of a multi-stable series origami structure [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1110–1121. DOI: 10.6052/0459-1879-19-115.
|
[14] |
YASUDA H, YANG J. Reentrant origami-based metamaterials with negative Poisson’s ratio and bistability [J]. Physical Review Letter, 2015, 114(18): 185502. DOI: 10.1103/PhysRevLett.114.185502.
|
[15] |
WANG C, ZOU S, ZHAO W, et al. Multi-objective explosion-proof performance optimization of a novel vehicle door with negative Poisson’s ratio structure [J]. Structural and Multidisciplinary Optimization, 2018, 58(4): 1805–1822. DOI: 10.1007/s00158-018-2026-z.
|
[16] |
BIRMAN V, KARDOMATEAS G A. Review of current trends in research and applications of sandwich structures [J]. Composites Part B: Engineering, 2018, 142: 221–240. DOI: 10.1016/j.compositesb.2018.01.027.
|
[17] |
STARR C M, KRAUTHAMMER T. Cladding-structure interaction under impact loads [J]. Journal of Structural Engineering, 2005, 131(8): 1178–1185. DOI: 10.1061/(asce)0733-9445(2005)131:8(1178).
|
[18] |
TARLOCHAN F. Sandwich structures for energy absorption applications: a review [J]. Materials, 2021, 14(16): 185502. DOI: 10.3390/ma14164731.
|
[19] |
HOU S, SHU C, ZHAO S, et al. Experimental and numerical studies on multi-layered corrugated sandwich panels under crushing loading [J]. Composite Structures, 2015, 126: 371–385. DOI: 10.1016/j.compstruct.2015.02.039.
|
[20] |
GHATE N, GOEL M D. Influence of core topology on blast mitigation application of multi-layered honeycomb core sandwich panel [J]. Materials Today Communications, 2023, 36:106531. DOI: 10.1016/j.mtcomm.2023.106531.
|
[21] |
LI Z, CHEN W, HAO H. Crushing behaviours of folded kirigami structure with square dome shape [J]. International Journal of Impact Engineering, 2018, 115: 94–105. DOI: 10.1016/j.ijimpeng.2018.01.013.
|
[22] |
LI Z, CHEN W, HAO H. Numerical study of open-top truncated pyramid folded structures with interconnected side walls against flatwise crushing [J]. Thin-Walled Structures, 2018, 132: 537–548. DOI: 10.1016/j.tws.2018.08.023.
|
[23] |
LI Z, FANG R, YANG Q, et al. Performance of sandwich cladding with modular truncated square pyramid foldcore under projectile impact [J]. International Journal of Impact Engineering, 2022, 166: 104258. DOI: 10.1016/j.ijimpeng.2022.104258.
|
[24] |
CAO B T, HOU B, ZHAO H, et al. On the influence of the property gradient on the impact behavior of graded multilayer sandwich with corrugated cores [J]. International Journal of Impact Engineering, 2018, 113: 98–105. DOI: 10.1016/j.ijimpeng.2017.11.017.
|