Volume 44 Issue 5
May  2024
Turn off MathJax
Article Contents
QIAO Yonggang, HUA Jie, YUAN Danping, ZHANG Zeyu, ZUO Wenzhe. Experimental and molecular dynamics studies on the synergistic suppression of gas explosions in gas-solid media[J]. Explosion And Shock Waves, 2024, 44(5): 055402. doi: 10.11883/bzycj-2023-0322
Citation: QIAO Yonggang, HUA Jie, YUAN Danping, ZHANG Zeyu, ZUO Wenzhe. Experimental and molecular dynamics studies on the synergistic suppression of gas explosions in gas-solid media[J]. Explosion And Shock Waves, 2024, 44(5): 055402. doi: 10.11883/bzycj-2023-0322

Experimental and molecular dynamics studies on the synergistic suppression of gas explosions in gas-solid media

doi: 10.11883/bzycj-2023-0322
  • Received Date: 2023-09-06
  • Rev Recd Date: 2023-12-10
  • Available Online: 2024-01-25
  • Publish Date: 2024-05-08
  • Aiming at the problem that the traditional single-phase explosion suppression medium is not effective, it is proposed that the gas-solid two-phase medium cooperates with different explosion suppression principles to achieve efficient and rapid suppression of gas explosion. The method of using NaHCO3 powder and CO2 gas to synergistically suppress gas explosion was studied. The standard 20 L spherical explosion test device was selected, and the configuration optimization of reactants, transition states and products in the microscopic reaction mechanism of methane explosion was carried out by DFT (density funchtion theory). On this basis, the subsequent calculation was carried out. The results show that the single-phase medium with a volume fraction of 16% CO2 and 0.35 g/L NaHCO3 has an excellent effect on suppressing gas explosion, but the presence of 0.1 g/L powder will increase the maximum boosting rate by 17.9%. Compared with single-phase CO2 and single-phase NaHCO3 powder, the gas-solid two-phase medium explosion suppression phase reduces the maximum explosion pressure. When 8% volume fraction CO2 is used in conjunction with 0.125 g/L powder, the maximum explosion pressure of gas explosion is reduced by 72.42%, and the maximum pressure rise rate is reduced to 2.345 MPa/s. The suppression effect is optimal; however, when 4% volume fraction CO2 cooperates with 0.05 g/L powder, the maximum explosion pressure rise rate increases by 93.68%, and the reaction shows a certain intensification phenomenon. The quantum chemical calculation shows that in the process of gas-solid two-phase medium synergistic inhibition of gas explosion, the decomposition of NaHCO3 powder will absorb the heat in the reaction system, and its decomposition products will preferentially react with OH· and H· in the mixed system, hindering the generation of O·, inhibiting the chain process in the CH2O stage, and then inhibiting the transfer process of chain reaction. The CO2 produced by the decomposition of NaHCO3 powder and the CO2 in the mixed system dilute the volume fraction of methane in the mixed system, reduce the probability of collision between methane and oxygen molecules, and effectively inhibit the reaction process.
  • loading
  • [1]
    朱云飞, 王德明, 李德利, 等. 2000—2016年我国煤矿重特大事故统计分析 [J]. 能源与环保, 2018, 40(9): 40–43. DOI: 10.19389/j.cnki.1003-0506.2018.09.008.

    ZHU Y F, WANG D M, LI D L, et al. Statistics analysis of serious coal mine disasters from 2000 to 2016 in China [J]. China Energy and Environmental Protection, 2018, 40(9): 40–43. DOI: 10.19389/j.cnki.1003-0506.2018.09.008.
    [2]
    余明高, 阳旭峰, 郑凯, 等. 我国煤矿瓦斯爆炸抑爆减灾技术的研究进展及发展趋势 [J]. 煤炭学报, 2020, 45(1): 168–188. DOI: 10.13225/j.cnki.jccs.YG19.1422.

    YU M G, YANG X F, ZHENG K, et al. Progress and development of coal mine gas explosion suppression and disaster reduction technology in China [J]. Journal of China Coal Society, 2020, 45(1): 168–188. DOI: 10.13225/j.cnki.jccs.YG19.1422.
    [3]
    TAN W, LÜ D, LIU L Y, et al. Suppression of methane/air explosion by water mist with potassium halide additives driven by CO2 [J]. Chinese Journal of Chemical Engineering, 2019, 27(11): 2742–2748. DOI: 10.1016/j.cjche.2019.03.020.
    [4]
    WEN X P, WANG M M, WANG F H, et al. Combined effects of obstacle and fine water mist on gas explosion characteristics [J]. Chinese Journal of Chemical Engineering, 2021, 40: 131–140. DOI: 10.1016/j.cjche.2020.10.042.
    [5]
    贾宝山, 肖明慧, 王连聪, 等. 受限空间N2对CH4最大爆炸压力的影响实验与模拟研究 [J]. 矿业安全与环保, 2018, 45(2): 11–14, 20. DOI: 10.3969/j.issn.1008-4495.2018.02.003.

    JIA B S, XIAO M H, WANG L C, et al. Influence experiment and simulation study of N2 on the maximum explosion pressure of CH4 in the limited space [J]. Mining Safety & Environmental Protection, 2018, 45(2): 11–14, 20. DOI: 10.3969/j.issn.1008-4495.2018.02.003.
    [6]
    CUI C B, SHAO H, JIANG S G, et al. Experimental study on gas explosion suppression by coupling CO2 to a vacuum chamber [J]. Powder Technology, 2018, 335: 42–53. DOI: 10.1016/j.powtec.2018.04.070.
    [7]
    文虎, 王秋红, 邓军, 等. 超细Al(OH)3粉体浓度对甲烷爆炸压力的影响 [J]. 煤炭学报, 2009, 34(11): 1479–1482. DOI: 10.3321/j.issn:0253-9993.2009.11.009.

    WEN H, WANG Q H, DENG J, et al. Effect of the concentration of Al(OH)3 ultrafine powder on the pressure of methane explosion [J]. Journal of China Coal Society, 2009, 34(11): 1479–1482. DOI: 10.3321/j.issn:0253-9993.2009.11.009.
    [8]
    LIU X D, GUO J, TANG W F, et al. Enhancing the flame retardancy of thermoplastic polyurethane by introducing montmorillonite nanosheets modified with phosphorylated chitosan [J]. Composites Part A: Applied Science and Manufacturing, 2019, 119: 291–298. DOI: 10.1016/j.compositesa.2019.02.009.
    [9]
    周建华, 郝变芝, 高敬民. 聚磷酸铵杂化纳米SiO2溶胶的制备及阻燃性能研究 [J]. 陕西科技大学学报, 2017, 35(2): 77–81. DOI: 10.19481/j.cnki.issn1000-5811.2017.02.015.

    ZHOU J H, HAO B Z, GAO J M. Study on the preparation and flame retardancy of ammonium polyphosphate hybrid nano-silica sol [J]. Journal of Shaanxi University of Science & Technology, 2017, 35(2): 77–81. DOI: 10.19481/j.cnki.issn1000-5811.2017.02.015.
    [10]
    李笑堃. 煤矿井下主动抑爆隔爆系统技术研究 [D]. 太原: 中北大学, 2016.

    LI X K. Research on the technology of coal mine active explosion suppression and isolation system [D]. Taiyuan: North University of China, 2016.
    [11]
    LIU R Z, ZHANG M C, JIA B S. Inhibition of gas explosion by nano-SiO2 powder under the condition of obstacles [J]. Integrated Ferroelectrics, 2021, 216(1): 305–321. DOI: 10.1080/10584587.2021.1911296.
    [12]
    WANG Q H, SUN Y L, JIANG J C, et al. Inhibiting effects of gas-particle mixtures containing CO2, Mg(OH)2 particles, and NH4H2PO4 particles on methane explosion in a 20-L closed vessel [J]. Journal of Loss Prevention in the Process Industries, 2020, 64: 104082. DOI: 10.1016/j.jlp.2020.104082.
    [13]
    梁天水, 林争雄, 毛思远, 等. 典型超细干粉与惰性气体的协同灭火效果研究 [J]. 中国安全科学学报, 2021, 31(11): 148–154. DOI: 10.16265/j.cnki.issn1003-3033.2021.11.021.

    LIANG T S, LIN Z X, MAO S Y, et al. Study on synergistic fire extinguishing effect of typical superfine dry powder and inert gas [J]. China Safety Science Journal, 2021, 31(11): 148–154. DOI: 10.16265/j.cnki.issn1003-3033.2021.11.021.
    [14]
    CHEN X F, HOU X Z, ZHAO Q, et al. Suppression of methane/coal dust deflagration by Al(OH)3 based on flame propagation characteristics and thermal decomposition [J]. Fuel, 2022, 311: 122530. DOI: 10.1016/j.fuel.2021.122530.
    [15]
    JIA J Z, TIAN X Y, WANG F X. Study on the effect of KHCO3 particle size and powder spraying pressure on the methane explosion suppression characteristics of pipe networks [J]. ACS Omega, 2022, 7(36): 31974–31982. DOI: 10.1021/acsomega.2c02945.
    [16]
    李孝斌, 张瑞杰, 崔沥巍, 等. 尿素抑制甲烷爆炸过程中爆炸压力与自由基变化耦合分析 [J]. 爆炸与冲击, 2020, 40(3): 032101. DOI: 10.11883/bzycj-2019-0090.

    LI X B, ZHANG R J, CUI L W, et al. Coupling analysis of explosion pressure and free radical change during methane explosion inhibited by urea [J]. Explosion and Shock Waves, 2020, 40(3): 032101. DOI: 10.11883/bzycj-2019-0090.
    [17]
    何文浩, 郝朝瑜, 张亚超, 等. 硅藻土抑制瓦斯爆炸的微观机理分析 [J]. 煤炭学报, 2022, 47(10): 3695–3703. DOI: 10.13225/j.cnki.jccs.2021.1457.

    HE W H, HAO C Y, ZHANG Y C, et al. Microscopic mechanism analysis of inhibition on methane explosion by diatomite [J]. Journal of China Coal Society, 2022, 47(10): 3695–3703. DOI: 10.13225/j.cnki.jccs.2021.1457.
    [18]
    孟祥卿. 气/固两相抑制剂的甲烷抑爆特性研究 [D]. 焦作: 河南理工大学, 2019. DOI: 10.27116/d.cnki.gjzgc.2019.000200.

    MENG X Q. Suppression characteristics of gas/solid two-phase inhibitors on methane explosion [D]. Jiaozuo, Henan, China: Henan Polytechnic University, 2019. DOI: 10.27116/d.cnki.gjzgc.2019.000200.
    [19]
    田志辉. 气-固混合抑制剂对矿井瓦斯的抑爆实验研究 [D]. 西安: 西安科技大学, 2013.

    TIAN Z H. Suppressing experimental study on mine methane explosion by the gas-solid mixied inhibitors [D]. Xi’an: Xi’an University of Science and Technology, 2013.
    [20]
    LUO Z M, SU B, LI Q, et al. Micromechanism of the initiation of a multiple flammable gas explosion [J]. Energy & Fuels, 2019, 33(8): 7738–7748. DOI: 10.1021/acs.energyfuels.9b00480.
    [21]
    罗振敏, 康凯, 任军莹. NH3对甲烷链式爆炸的微观作用机理 [J]. 煤炭学报, 2016, 41(4): 876–883. DOI: 10.13225/j.cnki.jccs.2015.0922.

    LUO Z M, KANG K, REN J Y. Microscopic mechanism of NH3 on chain of methane explosion [J]. Journal of China Coal Society, 2016, 41(4): 876–883. DOI: 10.13225/j.cnki.jccs.2015.0922.
    [22]
    SU B, LUO Z M, WANG T, et al. Chemical kinetic behaviors at the chain initiation stage of CH4/H2/air mixture [J]. Journal of Hazardous Materials, 2021, 403: 123680. DOI: 10.1016/j.jhazmat.2020.123680.
    [23]
    姜海洋, 张国宾. CO与H2O抑制瓦斯爆炸的微观反应机理 [J]. 煤炭转化, 2019, 42(6): 77–87. DOI: 10.19726/j.cnki.ebcc.201906011.

    JIANG H Y, ZHANG G B. Microscopic mechanism of CO and H2O on chain of methane explosion [J]. Coal Conversion, 2019, 42(6): 77–87. DOI: 10.19726/j.cnki.ebcc.201906011.
    [24]
    余明高, 孔杰, 王燕, 等. 不同浓度甲烷-空气预混气体爆炸特性的试验研究 [J]. 安全与环境学报, 2014, 14(6): 85–90. DOI: 10.13637/j.issn.1009-6094.2014.06.021.

    YU M G, KONG J, WANG Y, et al. Experiment study on explosion characteristic features of the methane-air pre-mixture at different concentrations [J]. Journal of Safety and Environment, 2014, 14(6): 85–90. DOI: 10.13637/j.issn.1009-6094.2014.06.021.
    [25]
    LIU Y, ZHANG Y S, MENG X B, et al. Research on flame propagation and explosion overpressure of oil shale dust explosion suppression by NaHCO3 [J]. Fuel, 2022, 314: 122778. DOI: 10.1016/j.fuel.2021.122778.
    [26]
    王华, 葛岭梅, 邓军. 惰性气体抑制矿井瓦斯爆炸的实验研究 [J]. 矿业安全与环保, 2008, 35(1): 4–7. DOI: 10.3969/j.issn.1008-4495.2008.01.002.

    WANG H, GE L M, DENG J. Experimental study of using inert gas to suppress mine gas explosion [J]. Mining Safety & Environmental Protection, 2008, 35(1): 4–7. DOI: 10.3969/j.issn.1008-4495.2008.01.002.
    [27]
    丁超, 王信群, 徐海顺, 等. 喷射超细ABC粉体对瓦斯爆炸的抑制与增强作用 [J]. 煤炭学报, 2021, 46(6): 1799–1807. DOI: 10.13225/j.cnki.jccs.hz21.0350.

    DING C, WANG X Q, XU H S, et al. Suppression and enhancement of methane/air explosion by discharge of ultrafine ABC powders [J]. Journal of China Coal Society, 2021, 46(6): 1799–1807. DOI: 10.13225/j.cnki.jccs.hz21.0350.
    [28]
    梁运涛. 瓦斯爆炸反应动力学特性及其抑制机理 [M]. 北京: 科学出版社, 2013: 33–35, 96–112.
    [29]
    王秋红, 蒋夏夏, 代爱萍. 基于Gaussian的甲烷爆炸微观反应计算分析 [J]. 中国安全生产科学技术, 2022, 18(6): 178–184. DOI: 10.11731/j.issn.1673-193x.2022.06.027.

    WANG Q H, JIANG X X, DAI A P. Calculation and analysis on micro reaction of methane explosion based on Gaussian [J]. Journal of Safety Science and Technology, 2022, 18(6): 178–184. DOI: 10.11731/j.issn.1673-193x.2022.06.027.
    [30]
    侯金丽, 金平, 蔡国飙. 基于敏感性分析的氧/甲烷燃烧反应简化机理 [J]. 航空动力学报, 2012, 27(7): 1549–1554. DOI: 10.13224/j.cnki.jasp.2012.07.029.

    HOU J L, JIN P, CAI G B. Reduced mechanism for oxygen/methane combustion based on sensitivity analysis [J]. Journal of Aerospace Power, 2012, 27(7): 1549–1554. DOI: 10.13224/j.cnki.jasp.2012.07.029.
    [31]
    WANG Y, LIN C D, QI Y Q, et al. Suppression of polyethylene dust explosion by sodium bicarbonate [J]. Powder Technology, 2020, 367: 206–212. DOI: 10.1016/j.powtec.2020.03.049.
    [32]
    LIN C D, QI Y Q, GAN X Y, et al. Investigation into the suppression effects of inert powders on the minimum ignition temperature and the minimum ignition energy of polyethylene dust [J]. Processes, 2020, 8(3): 294. DOI: 10.3390/pr8030294.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (266) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return