Citation: | JIA Xufei, ZHANG Daoping, DONG Gang, GUI Mingyue. Structure and propagation mode of gaseous spinning detonation in rectangular tube[J]. Explosion And Shock Waves, 2024, 44(5): 051001. doi: 10.11883/bzycj-2023-0349 |
[1] |
CAMPBELL C, WOODHEAD D W. CCCCI.—the ignition of gases by an explosion-wave. part I. carbon monoxide and hydrogen mixtures [J]. Journal of the Chemical Society (Resumed), 1926, 129: 3010–3021. DOI: 10.1039/JR9262903010.
|
[2] |
BONE W A, FRASER R P, WHEELER W H. A photographic investigation of flame movements in gaseous explosions Ⅶ—the phenomenon of spin in detonation [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1935, 235(746): 29–68. DOI: 10.1038/136974a0.
|
[3] |
FAY J A. A mechanical theory of spinning detonation [J]. The Journal of Chemical Physics, 1952, 20(6): 942–950. DOI: 10.1063/1.1700655.
|
[4] |
EDWARDS D H, PARRY D J, JONES A T. The structure of the wave front in spinning detonation [J]. Journal of Fluid Mechanics, 1966, 26(2): 321–336. DOI: 10.1017/S0022112066001265.
|
[5] |
HUANG Z W, LEFEBVRE M H, VAN TIGGELEN P J. Experiments on spinning detonations with detailed analysis of the shock structure [J]. Shock Waves, 2000, 10(2): 119–125. DOI: 10.1007/s001930050185.
|
[6] |
DOU H S, TSAI H M, KHOO B C, et al. Simulations of detonation wave propagation in rectangular ducts using a three-dimensional WENO scheme [J]. Combustion and Flame, 2008, 154(4): 644–659. DOI: 10.1016/j.combustflame.2008.06.013.
|
[7] |
DOU H S, KHOO B C. Effect of initial disturbance on the detonation front structure of a narrow duct [J]. Shock Waves, 2010, 20(2): 163–173. DOI: 10.1007/s00193-009-0240-8.
|
[8] |
TSUBOI N, ASAHARA M, ETO K, et al. Numerical simulation of spinning detonation in square tube [J]. Shock Waves, 2008, 18(4): 329–344. DOI: 10.1007/s00193-008-0153-y.
|
[9] |
TSUBOI N, ETO K, HAYASHI A K. Detailed structure of spinning detonation in a circular tube [J]. Combustion and Flame, 2007, 149(1/2): 144–161. DOI: 10.1016/j.combustflame.2006.12.004.
|
[10] |
TSUBOI N, HAYASHI A K. Numerical study on spinning detonations [J]. Proceedings of the Combustion Institute, 2007, 31(2): 2389–2396. DOI: 10.1016/j.proci.2006.07.262.
|
[11] |
NAGAO T, ASAHARA M, HAYASHI A K, et al. Numerical analysis of spinning detonation dependency on initial pressure using AUSMDV scheme [C] // 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Grapevine: AIAA, 2013. DOI: 10.2514/6.2013-1177.
|
[12] |
HUANG Y, JI H, LIEN F, et al. Numerical study of three-dimensional detonation structure transformations in a narrow square tube: from rectangular and diagonal modes into spinning modes [J]. Shock Waves, 2014, 24(4): 375–392. DOI: 10.1007/s00193-014-0499-2.
|
[13] |
SUGIYAMA Y, MATSUO A. Numerical study of acoustic coupling in spinning detonation propagating in a circular tube [J]. Combustion and Flame, 2013, 160(11): 2457–2470. DOI: 10.1016/j.combustflame.2013.06.003.
|
[14] |
SUGIYAMA Y, MATSUO A. Numerical analysis on acoustic coupling of spinning detonation in a square tube [J]. Journal of Thermal Science and Technology, 2016, 11(1): JTST0010. DOI: 10.1299/jtst.2016jtst0010.
|
[15] |
WANG C, SHU C W, HAN W H, et al. High resolution WENO simulation of 3D detonation waves [J]. Combustion and Flame, 2013, 160(2): 447–462. DOI: 10.1016/j.combustflame.2012.10.002.
|
[16] |
王成, 韩文虎, 宁建国. 三维气相爆轰动态并行计算程序设计与开发 [J]. 计算力学学报, 2012, 29(6): 948–953. DOI: 10.7511/jslx201206022.
WANG C, HAN W H, NING J G. Design and development of dynamic parallel computing code for three-dimensional gaseous detonation [J]. Chinese Journal of Computational Mechanics, 2012, 29(6): 948–953. DOI: 10.7511/jslx201206022.
|
[17] |
WANG C, LI P, GAO Z, et al. Three-dimensional detonation simulations with the mapped WENO-Z finite difference scheme [J]. Computers & Fluids, 2016, 139: 105–111. DOI: 10.1016/j.compfluid.2016.04.016.
|
[18] |
沈洋, 申华, 刘凯欣. 矩形通道中三维气相爆轰的三波线结构分析[C]//北京力学会第21届学术年会暨北京振动工程学会第22届学术年会论文集. 北京: 北京力学会, 北京振动工程学会, 2015. DOI: 10.11883/1001-1455(2016)05-0577-06.
|
[19] |
SHEN Y, SHEN H, LIU K X, et al. Three-dimensional detonation cellular structures in rectangular ducts using an improved CESE scheme [J]. Chinese Physics B, 2016, 25(11): 114702. DOI: 10.1088/1674-1056/25/11/114702.
|
[20] |
XIAO Q, SOW A, MAXWELL B M, et al. Effect of boundary layer losses on 2D detonation cellular structures [J]. Proceedings of the Combustion Institute, 2021, 38(3): 3641–3649. DOI: 10.1016/j.proci.2020.07.068.
|
[21] |
SHORT M, SHARPE G J. Pulsating instability of detonations with a two-step chain-branching reaction model: theory and numerics [J]. Combustion Theory and Modelling, 2003, 7(2): 401–416. DOI: 10.1088/1364-7830/7/2/311.
|
[22] |
SHORT M. Multidimensional linear stability of a detonation wave at high activation energy [J]. SIAM Journal on Applied Mathematics, 1997, 57(2): 307–326. DOI: 10.1137/s0036139995288101.
|
[23] |
SHORT M, DOLD J W. Linear stability of a detonation wave with a model three-step chain-branching reaction [J]. Mathematical and Computer Modelling, 1996, 24(8): 115–123. DOI: 10.1016/0895-7177(96)00144-6.
|
[24] |
VASIL’EV A A. Near-limiting regimes of gaseous detonation [J]. Combustion, Explosion and Shock Waves, 1987, 23(3): 358–364. DOI: 10.1007/BF00748799.
|
[25] |
VOITSEKHOVSKII B V, MITROFANOV V V, TOPCHIYAN M E. Structure of the detonation front in gases(survey) [J]. Combustion, Explosion and Shock Waves, 1969, 5(3): 267–273. DOI: 10.1007/BF00748606.
|
[26] |
FICKETT W, DAVIS W C. Detonation [M]. Berkeley: University of California Press, 1979.
|