Citation: | MAO Wenzhe, ZHANG Guotao, YANG Shuaishuai, XU Zihui, WANG Yan, JI Wentao. Characteristics of hydrogenated magnesium dust explosion flame propagating in a semi-enclosed space[J]. Explosion And Shock Waves, 2024, 44(6): 065401. doi: 10.11883/bzycj-2023-0363 |
[1] |
周淑慧, 王军, 梁严. 碳中和背景下中国“十四五”天然气行业发展 [J]. 天然气工业, 2021, 41(2): 171–182. DOI: 10.3787/j.issn.1000-0976.2021.02.02.
ZHOU S H, WANG J, LIANG Y. Development of China’s natural gas industry during the 14th Five-Year Plan in the background of carbon neutrality [J]. Natural Gas Industry, 2021, 41(2): 171–182. DOI: 10.3787/j.issn.1000-0976.2021.02.02.
|
[2] |
孟翔宇, 陈铭韵, 顾阿伦, 等. “双碳”目标下中国氢能发展战略 [J]. 天然气工业, 2022, 42(4): 156–179. DOI: 10.3787/j.issn.1000-0976.2022.04.015.
MENG X Y, CHEN M Y, GU A L, et al. China’s hydrogen development strategy in the context of double carbon targets [J]. Natural Gas Industry, 2022, 42(4): 156–179. DOI: 10.3787/j.issn.1000-0976.2022.04.015.
|
[3] |
TU H L. Hydrogen energy: a global trend and China’s strategy [J]. Engineering, 2021, 7(6): 703. DOI: 10.1016/j.eng.2021.04.006.
|
[4] |
YANG Z H, WANG Z R, CAO X J, et al. Influences of concentration gradients and ignition positions on unconfined inhomogeneous hydrogen explosion [J]. International Journal of Hydrogen Energy, 2024, 50: 857–69. DOI: 10.1016/j.ijhydene.2023.07.209.
|
[5] |
刘翠伟, 裴业斌, 韩辉, 等. 氢能产业链及储运技术研究现状与发展趋势 [J]. 油气储运, 2022, 41(5): 498–514. DOI: 10.6047/j.issn.1000-8241.2022.05.002.
LlU C W, PEl Y B, HAN H, et al. Research status and development trend of hydrogen energy industry chain and the storage and transportation technologie [J]. Oil & Gas Storage and Transportation, 2022, 41(5): 498–514. DOI: 10.6047/j.issn.1000-8241.2022.05.002.
|
[6] |
LIU Y F, ZHANG W X, ZHANG X, et al. Nanostructured light metal hydride: fabrication strategies and hydrogen storage performance [J]. Renewable and Sustainable Energy Reviews, 2023, 184: 113560. DOI: 10.1016/j.rser.2023.113560.
|
[7] |
CORGNALE C, HARDY B, MOTYKA T, et al. Screening analysis of metal hydride based thermal energy storage systems for concentrating solar power plants [J]. Renewable and Sustainable Energy Reviews, 2014, 38: 821–833. DOI: 10.1016/j.rser.2014.07.049.
|
[8] |
HUANG Z G, GUO Z P, CALKA A, et al. Noticeable improvement in the desorption temperature from graphite in rehydrogenated MgH2/graphite composite [J]. Materials Science and Engineering: A, 2007, 447(1/2): 180–185. DOI: 10.1016/j.msea.2006.11.074.
|
[9] |
LIU L L, LI J, ZHANG L Y, et al. Effects of magnesium-based hydrogen storage materials on the thermal decomposition, burning rate, and explosive heat of ammonium perchlorate-based composite solid propellant [J]. Journal of Hazardous Materials, 2018, 342: 477–481. DOI: 10.1016/j.jhazmat.2017.08.055.
|
[10] |
MARKMAN E, LUZZATTO-SHUKRUN L, LEVY Y S, et al. Effect of additives on hydrogen release reactivity of magnesium hydride composites [J]. International Journal of Hydrogen Energy, 2022, 47(73): 31381–31394. DOI: 10.1016/j.ijhydene.2022.07.025.
|
[11] |
SAKINTUNA B, LAMARI-DARKRIM F, HIRSCHER M. Metal hydride materials for solid hydrogen storage: a review [J]. International Journal of Hydrogen Energy, 2007, 32(9): 1121–1140. DOI: 10.1016/j.ijhydene.2006.11.022.
|
[12] |
赵金钢, 李玉艳, 刘大斌, 等. 氢化镁对金属混合物最小点火能的影响 [J]. 含能材料, 2018, 26(5): 422–425. DOI: 10.11943/j.issn.1006-9941.2018.05.008.
ZHAO J G, LI Y Y, LIU D B, et al. Effect of magnesium hydride on the minimum ignition energy of metal mixture [J]. Chinese Journal of Energetic Materials, 2018, 26(5): 422–425. DOI: 10.11943/j.issn.1006-9941.2018.05.008.
|
[13] |
TSAI Y T, HUANG G T, ZHAO J Q, et al. Dust cloud explosion characteristics and mechanisms in MgH2‐based hydrogen storage materials [J]. AIChE Journal, 2021, 67(8): e17302. DOI: 10.1002/aic.17302.
|
[14] |
WU X L, XU S, PANG A M, et al. Hazard evaluation of ignition sensitivity and explosion severity for three typical MH2 (M= Mg, Ti, Zr) of energetic materials [J]. Defence Technology, 2021, 17(4): 1262–1268. DOI: 10.1016/j.dt.2020.06.011.
|
[15] |
ZHANG Q W, CHENG Y F, ZHANG B B, et al. Deflagration characteristics of freely propagating flames in magnesium hydride dust clouds [J]. Defence Technology, 2024, 31: 471–83. DOI: 10.1016/j.dt.2023.03.003.
|
[16] |
郑凯. 管道中氢气/甲烷混合燃料爆燃预混火焰传播特征研究 [D]. 重庆: 重庆大学, 2017.
ZHENG K. Study on the propagation characteristics of premixed flame of hydrogen/methanedeflagration in ducts [D]. Chongqing: Chongqing University, 2017.
|
[17] |
徐在龙. 封闭空间中火焰加速产生压力波及火焰—压力波相互作用的研究 [D]. 天津: 天津大学, 2020.
XU Z L. Fundamental study of flame acceleration generating pressure wave and flame-pressure wave interaction in confined space [D]. Tianjin: Tianjin University, 2020.
|
[18] |
WEI H Q, XU Z L, ZHOU L, et al. Effect of initial pressure on flame–shock interaction of hydrogen–air premixed flames [J]. International Journal of Hydrogen Energy, 2017, 42(17): 12657–12668. DOI: 10.1016/j.ijhydene.2017.03.099.
|
[19] |
陈刚, 张晓蕾, 徐帅, 等. 我国2005—2020年粉尘爆炸事故统计分析 [J]. 中国安全科学学报, 2022, 32(8): 76–83. DOI: 10.16265/j.cnki.issn1003-3033.2022.08.0812.
CHEN G, ZHANG X L, XU S, et al. Statistical analysis on dust explosion accidents in China from 2005 to 2020 [J]. China Safety Science Journal, 2022, 32(8): 76–83. DOI: 10.16265/j.cnki.issn1003-3033.2022.08.0812.
|
[20] |
王伟, 刘志云, 崔福庆, 等. 1981~2020年我国较大及以上危化品事故统计分析与对策研究 [J]. 应用化工, 2021, 50(8): 2187–2193. DOI: 10.16581/j.cnki.issn1671-3206.20210531.001.
WANG W, LIU Z Y, CUI F Q, et al. Statistical analysis and countermeasures of large and above chemical accidents in China during 1981–2020 [J]. Applied Chemical Industry, 2021, 50(8): 2187–2193. DOI: 10.16581/j.cnki.issn1671-3206.20210531.001.
|
[21] |
鲁征, 傅贵, 薛忠智. 天津港“8·12”危险品仓库火灾爆炸事故行为原因研究 [J]. 灾害学, 2017, 32(1): 205–211. DOI: 10.3969/j.issn.1000-811X.2017.01.036.
LU Z, FU G, XUE Z Z. Research on behavioral causes of a fire and explosion accident of 8·12 in Tianjin port [J]. Journal of Catastrophology, 2017, 32(1): 205–211. DOI: 10.3969/j.issn.1000-811X.2017.01.036.
|
[22] |
黄沿波, 刘铁梅. 化工园区安全管理技术策略 [J]. 灾害学, 2014, 29(1): 172–176. DOI: 10.3969/j.issn.1000-811X.2014.01.031.
HUANG Y B, LIU T M. Strategy on safety management technology of chemical industry park [J]. Journal of Catastrophology, 2014, 29(1): 172–176. DOI: 10.3969/j.issn.1000-811X.2014.01.031.
|
[23] |
XIONG X Y, GAO K, MU J, et al. Study on explosion characteristic parameters and induction mechanism of magnesium powder/hydrogen hybrids [J]. Fuel, 2022, 326: 125077. DOI: 10.1016/j.fuel.2022.125077.
|
[24] |
CASHDOLLAR K L, ZLOCHOWER I A. Explosion temperatures and pressures of metals and other elemental dust clouds [J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4/5/6): 337–348. DOI: 10.1016/j.jlp.2007.04.018.
|
[25] |
IMAMURA H, MASANARI K, KUSUHARA M, et al. High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling [J]. Journal of Alloys and Compounds, 2005, 386(1/2): 211–216. DOI: 10.1016/j.jallcom.2004.04.145.
|