Citation: | MA Minghui, WU Yiding, WANG Xiaodong, YU Yilei, WANG Botong, GAO Guangfa. Penetration resistance of ceramic/UHMWPE composite structures with porous titanium alloy sandwich layer[J]. Explosion And Shock Waves, 2024, 44(4): 041001. doi: 10.11883/bzycj-2023-0375 |
[1] |
MEDVEDOVSKI E. Ballistic performance of armour ceramics: influence of design and structure: Part 2 [J]. Ceramics International, 2010, 36(7): 2117–2127. DOI: 10.1016/j.ceramint.2010.05.022.
|
[2] |
LUO D J, WANG Y W, WANG F C, et al. The influence of metal cover plates on ballistic performance of silicon carbide subjected to large-scale tungsten projectile [J]. Materials and Design, 2020, 191: 108659. DOI: 10.1016/j.matdes.2020.108659.
|
[3] |
NAGLIERI V, GLUDOVATZ B, TOMSIA A P, et al. Developing strength and toughness in bio-inspired silicon carbide hybrid materials containing a compliant phase [J]. Acta Materialia, 2015, 98: 141–151. DOI: 10.1016/j.actamat.2015.07.022.
|
[4] |
LI J Z, ZHANG L S, HUANG F L. Experiments and simulations of tungsten alloy rods penetrating into alumina ceramic/603 armor steel composite targets [J]. International Journal of Impact Engineering, 2017, 101: 1–8. DOI: 10.1016/j.ijimpeng.2016.09.009.
|
[5] |
余毅磊, 蒋招绣, 王晓东, 等. 背板对氧化铝陶瓷薄板断裂锥形态的影响 [J]. 北京理工大学学报, 2021, 41(7): 713–720. DOI: 10.15918/j.tbit1001-0645.2020.107.
YU Y L, JIANG Z X, WANG X D, et al. Effect of backing plate condition on fracture cone shape of alumina ceramic thin tiles [J]. Transactions of Beijing Institute of Technology, 2021, 41(7): 713–720. DOI: 10.15918/j.tbit1001-0645.2020.107.
|
[6] |
ZAERA R, SÁNCHEZ-SÁEZ S, PÉREZ-CASTELLANOS J L, et al. Modelling of the adhesive layer in mixed ceramic/metal armours subjected to impact [J]. Composites Part A: Applied Science and Manufacturing, 2000, 31(8): 823–833. DOI: 10.1016/S1359-835X(00)00027-0.
|
[7] |
NGUYEN L H, RYAN S, CIMPOERU S J, et al. The effect of target thickness on the ballistic performance of ultra high molecular weight polyethylene composite [J]. International Journal of Impact Engineering, 2015, 75: 174–183. DOI: 10.1016/j.ijimpeng.2014.07.008.
|
[8] |
CAI S P, LIU J, ZHANG P, et al. Dynamic response of sandwich panels with multi-layered aluminum foam/UHMWPE laminate cores under air blast loading [J]. International Journal of Impact Engineering, 2020, 138: 103475. DOI: 10.1016/j.ijimpeng.2019.103475.
|
[9] |
CAI S P, LIU J, ZHANG P, et al. Experimental study on failure mechanisms of sandwich panels with multi-layered aluminum foam/UHMWPE laminate core under combined blast and fragments loading [J]. Thin-Walled Structures, 2020, 159: 107227. DOI: 10.1016/j.tws.2020.107227.
|
[10] |
SHEN Z W, HU D A, YANG G, et al. Ballistic reliability study on SiC/UHMWPE composite armor against armor-piercing bullet [J]. Composite Structures, 2019, 213: 209–219. DOI: 10.1016/j.compstruct.2019.01.078.
|
[11] |
武一丁, 王晓东, 余毅磊, 等. 纤维背板结构对B4C陶瓷复合装甲抗侵彻破碎特性的影响 [J]. 爆炸与冲击, 2023, 43(9): 091411. DOI: 10.11883/bzycj-2023-0133.
WU Y D, WANG X D, YU Y L, et al. Affection of fiber backboard structure on the penetration and crushing resistance of B4C ceramic composite armor [J]. Explosion and Shock Waves, 2023, 43(9): 091411. DOI: 10.11883/bzycj-2023-0133.
|
[12] |
DE OLIVEIRA BRAGA F, MILANEZI T L, MONTEIRO S N, et al. Ballistic comparison between epoxy-ramie and epoxy-aramid composites in Multilayered Armor Systems [J]. Journal of Materials Research and Technology, 2018, 7(4): 541–549. DOI: 10.1016/j.jmrt.2018.06.018.
|
[13] |
DE OLIVEIRA BRAGA F, BOLZAN L T, RAMOS F J H T V, et al. Ballistic efficiency of multilayered armor systems with sisal fiber polyester composites [J]. Materials Research, 2018, 20(S2): 767–774. DOI: 10.1590/1980-5373-MR-2017-1002.
|
[14] |
KARTIKEYA K, CHOUHAN H, RAM K, et al. Ballistic evaluation of steel/UHMWPE composite armor system against hardened steel core projectiles [J]. International Journal of Impact Engineering, 2022, 164: 104211. DOI: 10.1016/j.ijimpeng.2022.104211.
|
[15] |
WU K K, CHEN Y L, YEH J N, et al. Ballistic impact performance of SiC ceramic-dyneema fiber composite materials [J]. Advances in Materials Science and Engineering, 2020, 2020: 9457489. DOI: 10.1155/2020/9457489.
|
[16] |
NGUYEN L H, LÄSSIG T R, RYAN S, et al. A methodology for hydrocode analysis of ultra-high molecular weight polyethylene composite under ballistic impact [J]. Composites Part A: Applied Science and Manufacturing, 2016, 84: 224–235. DOI: 10.1016/j.compositesa.2016.01.014.
|
[17] |
HAZZARD M K, TRASK R S, HEISSERER U, et al. Finite element modelling of Dyneema® composites: from quasi-static rates to ballistic impact [J]. Composites Part A: Applied Science and Manufacturing, 2018, 115: 31–45. DOI: 10.1016/j.compositesa.2018.09.005.
|
[18] |
NUNES S G, SCAZZOSI R, MANES A, et al. Influence of projectile and thickness on the ballistic behavior of aramid composites: experimental and numerical study [J]. International Journal of Impact Engineering, 2019, 132: 103307. DOI: 10.1016/j.ijimpeng.2019.05.021.
|
[19] |
JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. AIP Conference Proceedings, 1994, 309(1): 981–984. DOI: 10.1063/1.46199.
|
[20] |
MA Y Y, WANG J T, ZHAO G Z, et al. New insights into the damage assessment and energy dissipation weight mechanisms of ceramic/fiber laminated composites under ballistic impact [J]. Ceramics International, 2023, 43(13): 21966–21977. DOI: 10.1016/j.ceramint.2023.04.021.
|
[21] |
HASHIN Z. Fatigue failure criteria for unidirectional fiber composites [J]. Journal of Applied Mechanics, 1981, 48(4): 846–852. DOI: 10.1115/1.3157744.
|
[22] |
TAN L B, TSE K M, LEE H P, et al. Performance of an advanced combat helmet with different interior cushioning systems in ballistic impact: experiments and finite element simulations [J]. International Journal of Impact Engineering, 2012, 50: 99–112. DOI: 10.1016/j.ijimpeng.2012.06.003.
|
[23] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
|
[24] |
JIANG Y, QIAN K, ZHANG Y L, et al. Experimental characterisation and numerical simulation of ballistic penetration of columnar ceramic/fiber laminate composite armor [J]. Materials and Design, 2022, 224: 111394. DOI: 10.1016/j.matdes.2022.111394.
|
[25] |
XIE Y, WANG T, WANG L M, et al. Numerical investigation of ballistic performance of SiC/TC4/UHMWPE composite armor against 7.62 mm AP projectile [J]. Ceramics International, 2022, 48(16): 24079–24090. DOI: 10.1016/j.ceramint.2022.05.088.
|
[26] |
STRASSBURGER E, HUNZINGER M, PATEL P, et al. Analysis of the fragmentation of AlON and spinel under ballistic impact [J]. Journal of Applied Mechanics, 2013, 80(3): 031807. DOI: 10.1115/1.4023573.
|
[27] |
GAO Y J, FENG X Y, LIU J X, et al. Design and ballistic penetration of “SiC/Ti6Al4V/UHMWPE” composite armor [J]. IOP Conference Series:Materials Science and Engineering, 2019, 563(4): 042043. DOI: 10.1088/1757-899X/563/4/042043.
|
[28] |
PHOENIX S L, PORWAL P K. A new membrane model for the ballistic impact response and V50 performance of multi-ply fibrous systems [J]. International Journal of Solids and Structures, 2003, 40(24): 6723–6765. DOI: 10.1016/S0020-7683(03)00329-9.
|
[29] |
GUO G D, ALAM S, PEEL L D. An investigation of the effect of a Kevlar-29 composite cover layer on the penetration behavior of a ceramic armor system against 7.62 mm APM2 projectiles [J]. International Journal of Impact Engineering, 2021, 157: 104000. DOI: 10.1016/j.ijimpeng.2021.104000.
|
[1] | ZHANG Qimin, ZHANG Xu, ZHAO Kang, SHU Junxiang, ZHANG Rong, ZHONG Bin. Law of reaction growth of shock initiation on the TATB based insensitive explosive JB-9014[J]. Explosion And Shock Waves, 2019, 39(4): 041405. doi: 10.11883/bzycj-2018-0050 |
[2] | PEI Hongbo, LIU Junming, ZHANG Xu, SHU Junxiang, HUANG Wenbin, ZHENG Xianxu. Measurement of Hugoniot relation for unreacted JB-9014 explosive with reverse-impact method[J]. Explosion And Shock Waves, 2019, 39(5): 052301. doi: 10.11883/bzycj-2017-0395 |
[3] | LU Qiang, WANG Zhanjiang, ZHANG Jingsen, DING Yang, LI Jin, GUO Zhiyun. Comparative studies on characteristics of elastic wave radiated from the tamped explosion in loess and rock-like sandy soil[J]. Explosion And Shock Waves, 2019, 39(5): 052202. doi: 10.11883/bzycj-2018-0025 |
[4] | LU Qiang, WANG Zhanjiang, ZHU Yurong, DING Yang, GUO Zhiyun. Construction of motion and deformation field in granite under tamped explosion using wave propagation coefficient[J]. Explosion And Shock Waves, 2019, 39(8): 083103. doi: 10.11883/bzycj-2019-0140 |
[5] | ZHANG Zhen, WANG Yonggang. Measurement system for split Hopkinson pressure bar apparatus based on laser interferometry technique[J]. Explosion And Shock Waves, 2018, 38(5): 1165-1171. doi: 10.11883/bzycj-2017-0116 |
[6] | PEI Hongbo, HUANG Wenbin, QIN Jincheng, ZHANG Xu, ZHAO Feng, ZHENG Xianxu. Reaction zone structure of JB-9014 explosive measured by PDV[J]. Explosion And Shock Waves, 2018, 38(3): 485-490. doi: 10.11883/bzycj-2017-0379 |
[7] | Yao Cheng-bao, Li Ruo, Tian Zhou, Guo Yong-hui. Two dimensional simulation for shock wave produced by strong explosion in free air[J]. Explosion And Shock Waves, 2015, 35(4): 585-590. doi: 10.11883/1001-1455(2015)04-0585-06 |
[8] | ZHOU Jie, TAO Gang, WANG Jian. Numericalsimulationoflunginjuryinducedbyshockwave[J]. Explosion And Shock Waves, 2012, 32(4): 418-422. doi: 10.11883/1001-1455(2012)04-0418-05 |
[9] | LI Hai-tao, ZHU Xi, WANG Lu, ZHANG Zhen-hua. Asimplifiedtheorymodelforbulkmovementofship-likebeams subjectedtosphericalshockwaves[J]. Explosion And Shock Waves, 2010, 30(1): 85-90. doi: 10.11883/1001-1455(2010)01-0085-06 |
[10] | CHEN Jun, ZENG Dai-peng, SUN Cheng-wei, ZHANG Zhen-yu, TAND uo-wang. Equationsofstateforoverdriven-detonationproducts ofJB-9014explosive[J]. Explosion And Shock Waves, 2010, 30(6): 583-587. doi: 10.11883/1001-1455(2010)06-0583-05 |
[11] | YAN Feng, JIANG Fu-xing. Experiment on rock damage under blasting load[J]. Explosion And Shock Waves, 2009, 29(3): 275-280. doi: 10.11883/1001-1455(2009)03-0275-06 |
[12] | SHI Hua-qiang, ZONG Zhi, JIA Jing-bei. Short-range characters of underwater blast waves[J]. Explosion And Shock Waves, 2009, 29(2): 125-130. doi: 10.11883/1001-1455(2009)02-0125-06 |
[13] | LI Jin-he, ZHAO Ji-bo, TAN Duo-wang, WANG Yan-ping, ZHANG Yuan-ping. Underwater shock wave performances of explosives[J]. Explosion And Shock Waves, 2009, 29(2): 172-176. doi: 10.11883/1001-1455(2009)02-0172-05 |
[14] | WANG Gui-ji, DENG Xiang-yang, TAN Fu-li, LIU Jun, ZHANG Ning, GU Yan, PENG Qi-xian, WU Gang, HAN Mei. Velocity measurement of the small size flyer of an exploding foil initiator[J]. Explosion And Shock Waves, 2008, 28(1): 28-31. doi: 10.11883/1001-1455(2008)01-0028-05 |
[15] | ZHANG Xin-hua, TANG Zhi-ping, XU Wei-wei, TANG Xiao-jun, ZHENG Hang. Experimental study on characteristics of shock-induced phase transition and spallation in FeMnNi alloy[J]. Explosion And Shock Waves, 2007, 27(2): 103-108. doi: 10.11883/1001-1455(2007)02-0103-06 |
[16] | LI Zhi-peng, LONG Xin-ping, HUANG Yi-min, HE Bi, WANG Rong, HE Song-wei. Electromagnetic gauge measurements of shock initiating JOB-9003 explosive[J]. Explosion And Shock Waves, 2006, 26(3): 269-272. doi: 10.11883/1001-1455(2006)03-0269-04 |
[17] | YU De-shui, ZHAO Feng, TAN Duo-wang, PENG Qi-xian, FANG Qing. Experimental studies on detonation driving behavior of JOB-9003 and JB-9014 slab explosives[J]. Explosion And Shock Waves, 2006, 26(2): 140-144. doi: 10.11883/1001-1455(2006)02-0140-05 |
[18] | ZHAO Jian-heng, SUN Cheng-wei, TAN Fu-li, PENG Qi-xian, WANG Gui-ji. Launch technique for isentropic compression flyer plates magnetically driven by using fast pulsed power[J]. Explosion And Shock Waves, 2005, 25(4): 303-308. doi: 10.11883/1001-1455(2005)04-0303-06 |
[19] | JIANG Xiao-hua, LONG Xin-ping, HE Bi, CHEN Lang, HUANG Yi-min, ZHANG Hai-bin. Numerical simulation of detonation in aluminized explosives containing oxidiser (AP)[J]. Explosion And Shock Waves, 2005, 25(1): 26-30. doi: 10.11883/1001-1455(2005)01-0026-05 |
[20] | DENG Xiang-yang, ZHAO Jian-heng, MA Dong-li, PENG Qi-xian. Experimental study on velocity of a film flyer driven by electrical gun[J]. Explosion And Shock Waves, 2005, 25(4): 382-384. doi: 10.11883/1001-1455(2005)04-0382-03 |