Volume 44 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
ZHANG Xuerui, ZHOU Tao. Energy release characteristics of composite charge in confined space[J]. Explosion And Shock Waves, 2024, 44(6): 062302. doi: 10.11883/bzycj-2023-0381
Citation: ZHANG Xuerui, ZHOU Tao. Energy release characteristics of composite charge in confined space[J]. Explosion And Shock Waves, 2024, 44(6): 062302. doi: 10.11883/bzycj-2023-0381

Energy release characteristics of composite charge in confined space

doi: 10.11883/bzycj-2023-0381
  • Received Date: 2023-10-17
  • Rev Recd Date: 2024-03-22
  • Available Online: 2024-03-26
  • Publish Date: 2024-06-18
  • In order to study the energy release characteristics of composite charge in confined space, a type of coaxial composite charge was designed with the inner layer of thermobaric explosive JHL-6 and the outer layer of mixed fuel of different components. The mixed fuel was mainly composed of Al/PTFE active material or boron-based fuel. The Al/PTFE active material can undergo a detonation-like reaction and provide energy for shock wave, but its reaction products are all solid. The lack of gaseous medium is not conducive to shock wave propagation. However, boron-based fuel can decompose to produce gas under detonation loading, which can make up for the shortcomings of the Al/PTFE active material. The mixed fuel formulations were designed and the content of boron-based fuel in different formulations was determined. The internal explosion test on composite charge was carried out by using a sealed explosion device. The shock wave overpressure on the device wall and the quasi-static pressure were obtained, which can be used to evaluate the implosion power of the composite charges. The effects of boron-fuel content, secondary ignition energy and reactant concentration on the post-combustion reaction and energy release characteristics of the composite charges were investigated by using the method of implosion power evaluation. The test results show that the quasi-static pressure of the composite charge with the same mass but different boron-based fuel content increases first and then decreases with the increase of boron-based fuel content, and the optimal volume fraction of boron-based fuel decomposition products participating in the secondary reaction is about 1.0%. For the composite charge, because the oxygen content in the confined space is limited, when the concentration of substances involved in the secondary reaction reaches a certain threshold, the quasi-static pressure cannot be effectively improved by increasing the ignition energy or the reactant concentration, so the energy utilization rate is not improved.
  • loading
  • [1]
    胡宏伟, 宋浦, 赵省向, 等. 有限空间内部爆炸研究进展 [J]. 含能材料, 2013, 21(4): 539–546. DOI: 10.3969/j.issn.1006-9941.2013.04.026.

    HU H W, SONG P, ZHAO S X, et al. Progress in explosion in confined space [J]. Chinese Journal of Energetic Materials, 2013, 21(4): 539–546. DOI: 10.3969/j.issn.1006-9941.2013.04.026.
    [2]
    焦晓龙, 赵鹏铎, 姚养无, 等. 基于仿真与量纲分析的不同药量TNT内爆下多舱室结构毁伤规律研究 [J]. 爆炸与冲击, 2020, 40(8): 085101. DOI: 10.11883/bzyjc-2019-0438.

    JIAO X L, ZHAO P D, YAO Y W, et al. Regulation of different quantity TNT blasting in multi-cabin structure based on simulation and dimensional analysis [J]. Explosion and Shock Waves, 2020, 40(8): 085101. DOI: 10.11883/bzyjc-2019-0438.
    [3]
    李芝绒, 张玉磊, 袁建飞, 等. 内部爆炸薄圆板的变形及有效载荷 [J]. 爆炸与冲击, 2020, 40(11): 113101. DOI: 10.11883/bzycj-2020-0045.

    LI Z R, ZHANG Y L, YUAN J F, et al. Deformation and payload of thin circular plates subjected to internal explosion [J]. Explosion and Shock Waves, 2020, 40(11): 113101. DOI: 10.11883/bzycj-2020-0045.
    [4]
    WEIBULL H R W. Pressures recorded in partially closed chambers at explosion of TNT charges [J]. Annals of the New York Academy of Sciences, 1968, 152(1): 357–361. DOI: 10.1111/j.1749-6632.1968.tb11987.x.
    [5]
    CARLSON R W. Confinement of an explosion by a steel vessel: LA-390 [R]. Los Alamos: LANL, 1945.
    [6]
    MOIR D C. Safety analysis of the M-2 confinement systems: LA-TM-264 [R]. Los Alamos: LANL, 1979.
    [7]
    钟巍, 田宙. 等压假设下考虑化学反应动力学影响的约束爆炸准静态压力的计算 [J]. 爆炸与冲击, 2013, 33(4): 375–380.

    ZHONG W, TIAN Z. Calculation of quasi-static pressures for confined explosions considering chemical reactions under isobaric assumption [J]. Explosion and Shock Waves, 2013, 33(4): 375–380.
    [8]
    AMES R G, DROTAR J T, SILBER J, et al. Quantitative distinction between detonation and after burn energy deposition using pressure-time histories in enclosed explosions [C]//Proceedings of the 13th International Detonation Symposium. Norfolk, Virginia: Office of Naval Research, 2006: 253–262.
    [9]
    张玉磊, 李芝绒, 蒋海燕, 等. 温压炸药内爆炸压力特性及威力试验研究 [J]. 兵工学报, 2018, 39(7): 1333–1338. DOI: 10.3969/j.issn.1000-1093.2018.07.011.

    ZHANG Y L, LI Z R, JIANG H Y, et al. Experimental study of the characteristics of internal explosion pressure and power of thermobaric explosive [J]. Acta Armamentarii, 2018, 39(7): 1333–1338. DOI: 10.3969/j.issn.1000-1093.2018.07.011.
    [10]
    王梓昂, 翟红波, 李芝绒, 等. 不同炸药在圆筒装置内爆炸冲击波载荷传播规律与分布特性 [J]. 弹箭与制导学报, 2019, 39(1): 11–14, 20. DOI: 10.15892/j.cnki.djzdxb.2019.01.003.

    WANG Z A, ZHAI H B, LI Z R, et al. Study on propagation rules and distribution characteristics of explosion shock wave loading on different explosives inside cylindrical device [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(1): 11–14, 20. DOI: 10.15892/j.cnki.djzdxb.2019.01.003.
    [11]
    金朋刚, 郭炜, 王建灵, 等. 不同粒度铝粉在HMX基炸药中的能量释放特性 [J]. 含能材料, 2015, 23(10): 989–993. DOI: 10.11943/j.issn.1006-9941.2015.10.013.

    JIN P G, GUO W, WANG J L, et al. Energy releasing characteristics of aluminum powder in HMX-based explosives [J]. Chinese Journal of Energetic Materials, 2015, 23(10): 989–993. DOI: 10.11943/j.issn.1006-9941.2015.10.013.
    [12]
    陈昊, 陶钢, 蒲元. 温压药在有限空间内爆炸冲击波的实验研究及数值模拟 [J]. 火炸药学报, 2009, 32(5): 41–45, 57. DOI: 10.3969/j.issn.1007-7812.2009.05.012.

    CHEN H, TAO G, PU Y. Experiment study and numerical simulation of shock wave generated by thermobaric column exploding in limited space [J]. Chinese Journal of Explosives and Propellants, 2009, 32(5): 41–45, 57. DOI: 10.3969/j.issn.1007-7812.2009.05.012.
    [13]
    刘欣, 顾文彬, 蔡星会, 等. 圆柱形爆炸容器的内壁爆炸载荷 [J]. 爆炸与冲击, 2022, 42(2): 022201. DOI: 10.11883/bzycj-2021-0209.

    LIU X, GU W B, CAI X H, et al. Blast loads on the inner wall of cylindrical explosion containment vessel [J]. Explosion and Shock Waves, 2022, 42(2): 022201. DOI: 10.11883/bzycj-2021-0209.
    [14]
    李芝绒, 翟红波, 闫潇敏, 等. 一种温压内爆炸准静态压力测量方法研究 [J]. 传感技术学报, 2016, 29(2): 208–212. DOI: 10.3969/j.issn.1004-1699.2016.02.010.

    LI Z R, ZHAI H B, YAN X M, et al. Test method research for the quas-static pressure on inside-explosive [J]. Chinese Journal of Sensors and Actuators, 2016, 29(2): 208–212. DOI: 10.3969/j.issn.1004-1699.2016.02.010.
    [15]
    李尚青, 李芝绒, 张玉磊, 等. 炸药在预制条形孔圆筒装置内爆炸威力的评价方法 [J]. 火炸药学报, 2020, 43(3): 341–344, 350. DOI: 10.14077/j.issn.1007-7812.201902015.

    LI S Q, LI Z R, ZHANG Y L, et al. An evaluation method of internal blast power in a perforated cylinder device [J]. Chinese Journal of Explosives and Propellants, 2020, 43(3): 341–344, 350. DOI: 10.14077/j.issn.1007-7812.201902015.
    [16]
    陈坤, 肖伟, 韩志伟, 等. 铝粉粒径对HMX基温压炸药在密闭空间爆炸参数的影响 [J]. 火炸药学报, 2020, 43(3): 298–302, 307. DOI: 10.14077/j.issn.1007-7812.201909018.

    CHEN K, XIAO W, HAN Z W, et al. Effect of aluminum particle size on the explosion parameters of HMX-based thermobaric explosives in confined space [J]. Chinese Journal of Explosives and Propellants, 2020, 43(3): 298–302, 307. DOI: 10.14077/j.issn.1007-7812.201909018.
    [17]
    李凌峰, 王辉, 韩秀凤, 等. Al/PTFE与炸药组合装药的爆炸释能特性 [J]. 火炸药学报, 2023, 46(1): 69–75. DOI: 10.14077/j.issn.1007-7812.202205006.

    LI L F, WANG H, HAN X F, et al. Explosive energy release characteristics of composite charges with Al/PTFE and explosives [J]. Chinese Journal of Explosives and Propellants, 2023, 46(1): 69–75. DOI: 10.14077/j.issn.1007-7812.202205006.
    [18]
    陶俊, 王晓峰. 金属-氟聚物机械活化含能材料的研究进展 [J]. 火炸药学报, 2017, 40(5): 8–14. DOI: 10.14077/j.issn.1007-7812.2017.05.022.

    TAO J, WANG X F. Research progress in metal-fluoropolymer mechanical activation energetic composites [J]. Chinese Journal of Explosives and Propellants, 2017, 40(5): 8–14. DOI: 10.14077/j.issn.1007-7812.2017.05.022.
    [19]
    张玉磊, 苏健军, 李芝绒, 等. TNT内爆炸准静态压力特性 [J]. 爆炸与冲击, 2018, 38(6): 1429–1434. DOI: 10.11883/bzycj-2017-0170.

    ZHANG Y L, SU J J, LI Z R, et al. Quasi-static pressure characteristic of TNT’s internal explosion [J]. Explosion and Shock Waves, 2018, 38(6): 1429–1434. DOI: 10.11883/bzycj-2017-0170.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (182) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return