Citation: | HUANG Bingyu, CHEN Xuemiao, ZHANG Xuping, XIONG Wei, WANG Guiji, ZHANG Xianfeng, SHUI Rongjie, XU Chao, TAN Fuli. Modes and influencing factors of electromagnetically driven high velocity formed projectile[J]. Explosion And Shock Waves, 2024, 44(4): 043301. doi: 10.11883/bzycj-2023-0388 |
[1] |
谭多望, 孙承纬. 成型装药研究新进展 [J]. 爆炸与冲击, 2008, 28(1): 50–56. DOI: 10.11883/1001-1455(2008)01-0050-07.
TAN D W, SUN C W. Progress in studies on shaped charge [J]. Explosion and Shock Waves, 2008, 28(1): 50–56. DOI: 10.11883/1001-1455(2008)01-0050-07.
|
[2] |
杨军, 蒋建伟, 门建兵. 准球形爆炸成型弹丸的形成、飞行及侵彻过程的数值模拟 [J]. 高压物理学报, 2006, 20(4): 429–433. DOI: 10.11858/gywlxb.2006.04.015.
YANG J, JIANG J W, MEN J B. Numerical simulation for formation flight and penetration of sphericity EFP [J]. Chinese Journal of High Pressure Physics, 2006, 20(4): 429–433. DOI: 10.11858/gywlxb.2006.04.015.
|
[3] |
刘建青, 顾文彬, 徐浩铭, 等. 多点起爆装药结构参数对尾翼EFP成型的影响 [J]. 含能材料, 2014(5): 594–599. DOI: 10.3969/j.issn.1006-9941.2014.05.004.
LIU J Q, GU W B, XU H M, et al. Effects of multi-point initiation charge configuration parameters on EFP with fins formation [J]. Chinese Journal of Energetic Materials, 2014(5): 594–599. DOI: 10.3969/j.issn.1006-9941.2014.05.004.
|
[4] |
郭莎, 任新联, 周涛, 等. 翻转成型大长径比爆炸成型弹丸的数值模拟 [J]. 科学技术与工程, 2019, 19(27): 272–276. DOI: 10.3969/j.issn.1671-1815.2019.27.039.
GUO S, REN X L, ZHOU T, et al. Numerical simulation of large length diameter ratio overturn molding explosively formed penetrator [J]. Science Technology and Engineering, 2019, 19(27): 272–276. DOI: 10.3969/j.issn.1671-1815.2019.27.039.
|
[5] |
黄炫宁, 李伟兵, 程伟, 等. 锥弧结合罩形成长杆状密实EFP的可行性 [J]. 含能材料, 2019, 27(2): 90–96. DOI: 10.11943/CJEM2018051.
HUANG X N, LI W B, CHENG W, et al. Feasibility of the formation of long rod-shaped compacted explosively formed penetrator by cone-arc liner [J]. Chinese Journal of Energetic Materials, 2019, 27(2): 90–96. DOI: 10.11943/CJEM2018051.
|
[6] |
王伟, 徐琳, 王玥兮, 等. 准球形EFP成形因素的正交优化设计与试验验证 [J]. 兵器材料科学与工程, 2020, 43(5): 22–25. DOI: 10.14024/j.cnki.1004-244x.20200513.001.
WANG W, XU L, WANG Y X, et al. Orthogonal optimization design and experimental study on formation process of quasi-spheral explosively formed projectile [J]. Ordnance Material Science and Engineering, 2020, 43(5): 22–25. DOI: 10.14024/j.cnki.1004-244x.20200513.001.
|
[7] |
张雪朋, 刘亚昆, 伊建亚, 等. 复合装药包覆式活性侵彻体成型及侵彻研究 [J]. 兵器装备工程学报, 2021, 42(7): 1–5. DOI: 10.11809/bqzbgcxb2021.07.001.
ZHANG X P, LIU Y K, YI J Y, et al. Study on formation and penetration of the wrapped reactive projectile formed by double-layer shaped charge [J]. Journal of Ordnance Equipment Engineering, 2021, 42(7): 1–5. DOI: 10.11809/bqzbgcxb2021.07.001.
|
[8] |
林加剑, 贾虎. 爆炸成型弹丸有效装药结构理论分析及试验研究 [J]. 弹箭与制导学报, 2015, 35(1): 59–62,67. DOI: 10.15892/j.cnki.djzdxb.2015.01.016.
LIN J J, JIA H. Theoretical analysis and experimental research on the effective shaped charge with EFP [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(1): 59–62,67. DOI: 10.15892/j.cnki.djzdxb.2015.01.016.
|
[9] |
张旭平. 电磁驱动实验技术及其加载下聚苯乙烯的动态行为研究 [D]. 绵阳: 中国工程物理研究院, 2019.
|
[10] |
DEGNAN J H, BAKER W L, ALME M L, et al. Multimegajoule electromagnetic implosion of shaped solid-density liners [J]. Fusion Technology, 1995, 27(2): 115–123. DOI: 10.13182/FST95-A30368.
|
[11] |
DEGNAN J H, TACCETTI J M, CAVAZOS T, et al. Implosion of solid liner for compression of field reversed configuration [J]. IEEE Transactions on Plasma Science, 2001, 29(1): 93–98. DOI: 10.1109/27.912947.
|
[12] |
DOU J H, JIA X, HUANG Z X, et al. Theoretical and numerical simulation study on jet formation and penetration of different liner structures driven by electromagnetic pressure [J]. Defence Technology, 2021, 17(3): 846–858. DOI: 10.1016/j.dt.2020.05.016.
|
[13] |
DOU J H, JIA X, HUANG Z X, et al. Theoretical study of the jet formation of a shaped charge liner driven by strong electromagnetic energy [J]. IEEE Transactions on Plasma Science, 2019, 47(12): 5283–5290. DOI: 10.1109/tps.2019.2951112.
|
[14] |
王桂吉, 罗斌强, 陈学秒, 等. 磁驱动平面准等熵加载装置、实验技术及应用研究新进展 [J]. 爆炸与冲击, 2021, 41(12): 121403. DOI: 10.11883/bzycj-2021-0119.
WANG G J, LUO B Q, CHEN X M, et al. Recent progress on the experimental facilities, techniques and applications of magnetically driven quasi-isentropic compression [J]. Explosion and Shock Waves, 2021, 41(12): 121403. DOI: 10.11883/bzycj-2021-0119.
|
[15] |
王桂吉. 磁驱动等熵压缩和飞片加载技术和实验研究 [D]. 绵阳: 中国工程物理研究院, 2007.
WANG G J. Research on magnetically driven isentropic compression and flyer plates [D]. Mianyang: China Academy of Engineering Physics, 2007.
|
[16] |
章征伟. 磁驱动固体套筒内爆理论与实验研究 [D]. 绵阳: 中国工程物理研究院, 2020.
ZHANG Z W. Theoretic and experimental study on magnetically driven solid linerimplosion [D]. Mianyang: China Academy of Engineering Physics, 2020.
|
[17] |
KNUDSON M D, LEMKE R W, HAYES D B, et al. Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique [J]. Journal of Applied Physics, 2003, 94(7): 4420–4431. DOI: 10.1063/1.1604967.
|
[18] |
GRACE F, DEGNAN J, ROTH C, et al. Shaped charge jets driven by electromagnetic energy [C]// Proceedings of the 28th International Symposium of Conference. Atlanta: International Ballistics Society, 2013: 15–26.
|
[19] |
HUANG B Y, ZHANG X P, WANG G J, et al. Shaped charge liner collapse and jet formation by electromagnetic loading on high pulsed power generator [J]. IEEE Transactions on Plasma Science, 2023, 51(10): 3140–3151. DOI: 10.1109/TPS.2023.3320665.
|
[20] |
CHEN X M, LUO B Q, ZHANG X P, et al. A compact pulsed power driver with precisely shaped current waveforms for magnetically driven loading experiments [J]. Review of Scientific Instruments, 2022, 93(8): 083910. DOI: 10.1063/5.0089939.
|
[21] |
DOLAN D H. Extreme measurements with photonic Doppler velocimetry (PDV) [J]. Review of Scientific Instruments, 2020, 91(5): 051501. DOI: 10.1063/5.0004363.
|
[22] |
ZELLNER M B, VUNNI G B. Photon Doppler velocimetry (PDV) characterization of shaped charge jet formation [J]. Procedia Engineering, 2013, 58: 88–97. DOI: 10.1016/j.proeng.2013.05.012.
|
[23] |
L'EPLATTENIER P, COOK G, ASHCRAFT C, et al. Introduction of an electromagnetism module in LS-DYNA for coupled mechanical-thermal-electromagnetic simulations [J]. Steel Research International, 2009, 80(5): 351–358. DOI: 10.2374/SRI08SP152.
|
[24] |
L'EPLATTENIER P, ÇALDICHOURY I. Recent developments in the electromagnetic module: a new 2D axi-symmetric EM solver [C]//Proceedings of the 10th European LS-DYNA Conference. Würzburg, German, 2015.
|
[25] |
张旭平, 赵剑衡, 谭福利, 等. 磁驱动飞片的三维数值模拟及分析 [J]. 高压物理学报, 2014, 28(4): 483–488. DOI: 10.11858/gywlxb.2014.04.015.
ZHANG X P, ZHAO J H, TAN F L, et al. Three-dimensional numerical simulation and analysis of magnetically driven flyer plates [J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 483–488. DOI: 10.11858/gywlxb.2014.04.015.
|
[26] |
BURGESS T J. Electrical resistivity model of metals [C]//Proceedings of the 4th International Conference on Megagauss Magnetic-Field Generation and Related Topics. Santa Fe, NM, USA, 1986.
|