Citation: | HUANG Bingyu, CHEN Xuemiao, ZHANG Xuping, XIONG Wei, WANG Guiji, ZHANG Xianfeng, SHUI Rongjie, XU Chao, TAN Fuli. Modes and influencing factors of electromagnetically driven high velocity formed projectile[J]. Explosion And Shock Waves, 2024, 44(4): 043301. doi: 10.11883/bzycj-2023-0388 |
[1] |
谭多望, 孙承纬. 成型装药研究新进展 [J]. 爆炸与冲击, 2008, 28(1): 50–56. DOI: 10.11883/1001-1455(2008)01-0050-07.
TAN D W, SUN C W. Progress in studies on shaped charge [J]. Explosion and Shock Waves, 2008, 28(1): 50–56. DOI: 10.11883/1001-1455(2008)01-0050-07.
|
[2] |
杨军, 蒋建伟, 门建兵. 准球形爆炸成型弹丸的形成、飞行及侵彻过程的数值模拟 [J]. 高压物理学报, 2006, 20(4): 429–433. DOI: 10.11858/gywlxb.2006.04.015.
YANG J, JIANG J W, MEN J B. Numerical simulation for formation flight and penetration of sphericity EFP [J]. Chinese Journal of High Pressure Physics, 2006, 20(4): 429–433. DOI: 10.11858/gywlxb.2006.04.015.
|
[3] |
刘建青, 顾文彬, 徐浩铭, 等. 多点起爆装药结构参数对尾翼EFP成型的影响 [J]. 含能材料, 2014(5): 594–599. DOI: 10.3969/j.issn.1006-9941.2014.05.004.
LIU J Q, GU W B, XU H M, et al. Effects of multi-point initiation charge configuration parameters on EFP with fins formation [J]. Chinese Journal of Energetic Materials, 2014(5): 594–599. DOI: 10.3969/j.issn.1006-9941.2014.05.004.
|
[4] |
郭莎, 任新联, 周涛, 等. 翻转成型大长径比爆炸成型弹丸的数值模拟 [J]. 科学技术与工程, 2019, 19(27): 272–276. DOI: 10.3969/j.issn.1671-1815.2019.27.039.
GUO S, REN X L, ZHOU T, et al. Numerical simulation of large length diameter ratio overturn molding explosively formed penetrator [J]. Science Technology and Engineering, 2019, 19(27): 272–276. DOI: 10.3969/j.issn.1671-1815.2019.27.039.
|
[5] |
黄炫宁, 李伟兵, 程伟, 等. 锥弧结合罩形成长杆状密实EFP的可行性 [J]. 含能材料, 2019, 27(2): 90–96. DOI: 10.11943/CJEM2018051.
HUANG X N, LI W B, CHENG W, et al. Feasibility of the formation of long rod-shaped compacted explosively formed penetrator by cone-arc liner [J]. Chinese Journal of Energetic Materials, 2019, 27(2): 90–96. DOI: 10.11943/CJEM2018051.
|
[6] |
王伟, 徐琳, 王玥兮, 等. 准球形EFP成形因素的正交优化设计与试验验证 [J]. 兵器材料科学与工程, 2020, 43(5): 22–25. DOI: 10.14024/j.cnki.1004-244x.20200513.001.
WANG W, XU L, WANG Y X, et al. Orthogonal optimization design and experimental study on formation process of quasi-spheral explosively formed projectile [J]. Ordnance Material Science and Engineering, 2020, 43(5): 22–25. DOI: 10.14024/j.cnki.1004-244x.20200513.001.
|
[7] |
张雪朋, 刘亚昆, 伊建亚, 等. 复合装药包覆式活性侵彻体成型及侵彻研究 [J]. 兵器装备工程学报, 2021, 42(7): 1–5. DOI: 10.11809/bqzbgcxb2021.07.001.
ZHANG X P, LIU Y K, YI J Y, et al. Study on formation and penetration of the wrapped reactive projectile formed by double-layer shaped charge [J]. Journal of Ordnance Equipment Engineering, 2021, 42(7): 1–5. DOI: 10.11809/bqzbgcxb2021.07.001.
|
[8] |
林加剑, 贾虎. 爆炸成型弹丸有效装药结构理论分析及试验研究 [J]. 弹箭与制导学报, 2015, 35(1): 59–62,67. DOI: 10.15892/j.cnki.djzdxb.2015.01.016.
LIN J J, JIA H. Theoretical analysis and experimental research on the effective shaped charge with EFP [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(1): 59–62,67. DOI: 10.15892/j.cnki.djzdxb.2015.01.016.
|
[9] |
张旭平. 电磁驱动实验技术及其加载下聚苯乙烯的动态行为研究 [D]. 绵阳: 中国工程物理研究院, 2019.
|
[10] |
DEGNAN J H, BAKER W L, ALME M L, et al. Multimegajoule electromagnetic implosion of shaped solid-density liners [J]. Fusion Technology, 1995, 27(2): 115–123. DOI: 10.13182/FST95-A30368.
|
[11] |
DEGNAN J H, TACCETTI J M, CAVAZOS T, et al. Implosion of solid liner for compression of field reversed configuration [J]. IEEE Transactions on Plasma Science, 2001, 29(1): 93–98. DOI: 10.1109/27.912947.
|
[12] |
DOU J H, JIA X, HUANG Z X, et al. Theoretical and numerical simulation study on jet formation and penetration of different liner structures driven by electromagnetic pressure [J]. Defence Technology, 2021, 17(3): 846–858. DOI: 10.1016/j.dt.2020.05.016.
|
[13] |
DOU J H, JIA X, HUANG Z X, et al. Theoretical study of the jet formation of a shaped charge liner driven by strong electromagnetic energy [J]. IEEE Transactions on Plasma Science, 2019, 47(12): 5283–5290. DOI: 10.1109/tps.2019.2951112.
|
[14] |
王桂吉, 罗斌强, 陈学秒, 等. 磁驱动平面准等熵加载装置、实验技术及应用研究新进展 [J]. 爆炸与冲击, 2021, 41(12): 121403. DOI: 10.11883/bzycj-2021-0119.
WANG G J, LUO B Q, CHEN X M, et al. Recent progress on the experimental facilities, techniques and applications of magnetically driven quasi-isentropic compression [J]. Explosion and Shock Waves, 2021, 41(12): 121403. DOI: 10.11883/bzycj-2021-0119.
|
[15] |
王桂吉. 磁驱动等熵压缩和飞片加载技术和实验研究 [D]. 绵阳: 中国工程物理研究院, 2007.
WANG G J. Research on magnetically driven isentropic compression and flyer plates [D]. Mianyang: China Academy of Engineering Physics, 2007.
|
[16] |
章征伟. 磁驱动固体套筒内爆理论与实验研究 [D]. 绵阳: 中国工程物理研究院, 2020.
ZHANG Z W. Theoretic and experimental study on magnetically driven solid linerimplosion [D]. Mianyang: China Academy of Engineering Physics, 2020.
|
[17] |
KNUDSON M D, LEMKE R W, HAYES D B, et al. Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique [J]. Journal of Applied Physics, 2003, 94(7): 4420–4431. DOI: 10.1063/1.1604967.
|
[18] |
GRACE F, DEGNAN J, ROTH C, et al. Shaped charge jets driven by electromagnetic energy [C]// Proceedings of the 28th International Symposium of Conference. Atlanta: International Ballistics Society, 2013: 15–26.
|
[19] |
HUANG B Y, ZHANG X P, WANG G J, et al. Shaped charge liner collapse and jet formation by electromagnetic loading on high pulsed power generator [J]. IEEE Transactions on Plasma Science, 2023, 51(10): 3140–3151. DOI: 10.1109/TPS.2023.3320665.
|
[20] |
CHEN X M, LUO B Q, ZHANG X P, et al. A compact pulsed power driver with precisely shaped current waveforms for magnetically driven loading experiments [J]. Review of Scientific Instruments, 2022, 93(8): 083910. DOI: 10.1063/5.0089939.
|
[21] |
DOLAN D H. Extreme measurements with photonic Doppler velocimetry (PDV) [J]. Review of Scientific Instruments, 2020, 91(5): 051501. DOI: 10.1063/5.0004363.
|
[22] |
ZELLNER M B, VUNNI G B. Photon Doppler velocimetry (PDV) characterization of shaped charge jet formation [J]. Procedia Engineering, 2013, 58: 88–97. DOI: 10.1016/j.proeng.2013.05.012.
|
[23] |
L'EPLATTENIER P, COOK G, ASHCRAFT C, et al. Introduction of an electromagnetism module in LS-DYNA for coupled mechanical-thermal-electromagnetic simulations [J]. Steel Research International, 2009, 80(5): 351–358. DOI: 10.2374/SRI08SP152.
|
[24] |
L'EPLATTENIER P, ÇALDICHOURY I. Recent developments in the electromagnetic module: a new 2D axi-symmetric EM solver [C]//Proceedings of the 10th European LS-DYNA Conference. Würzburg, German, 2015.
|
[25] |
张旭平, 赵剑衡, 谭福利, 等. 磁驱动飞片的三维数值模拟及分析 [J]. 高压物理学报, 2014, 28(4): 483–488. DOI: 10.11858/gywlxb.2014.04.015.
ZHANG X P, ZHAO J H, TAN F L, et al. Three-dimensional numerical simulation and analysis of magnetically driven flyer plates [J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 483–488. DOI: 10.11858/gywlxb.2014.04.015.
|
[26] |
BURGESS T J. Electrical resistivity model of metals [C]//Proceedings of the 4th International Conference on Megagauss Magnetic-Field Generation and Related Topics. Santa Fe, NM, USA, 1986.
|
[1] | GU Zhuowei, ZHOU Zhongyu, ZHAO Xincai, LU Yu, ZHANG Xuping, CHENG Cheng, ZHAO Juan, CHEN Guanghua, WU Gang, TAN Fuli, ZHAO Jianheng, SUN Chengwei. Experiment study of cascades explosive implosion magnetic flux generator[J]. Explosion And Shock Waves, 2024, 44(2): 021201. doi: 10.11883/bzycj-2023-0183 |
[2] | CHANG Lihua, WEN Weifeng, RAN Maojie, HUANG Wenbin, WANG Xu, HE Hui, GAO Peng. Study on ultra-high speed photoelectric framing photography of the multi-point initiation of explosive[J]. Explosion And Shock Waves, 2022, 42(4): 044101. doi: 10.11883/bzycj-2021-0201 |
[3] | ZHANG Shiwen, LI Yinglei, CHEN yan, DAN Jiakun, GUO Zhaoliang, LIU Mingtao. Investigation on the technology of soft recovery of fragment produced by metal cylindrical shell subjected to explosive loading[J]. Explosion And Shock Waves, 2021, 41(11): 114102. doi: 10.11883/bzycj-2020-0449 |
[4] | LUO Binqiang, ZHANG Xuping, HAO Long, MO Jianjun, WANG Guiji, SONG Zhenfei, TAN Fuli, WANG Xiang, ZHAO Jianheng. Advances on the techniques of ultrahigh-velocity launch above 7 km/s[J]. Explosion And Shock Waves, 2021, 41(2): 021401. doi: 10.11883/bzycj-2020-0307 |
[5] | JIANG Jianwei, PENG Jiacheng. Research advances in circumferential multiple linear explosively-formed projectile technology[J]. Explosion And Shock Waves, 2021, 41(10): 101102. doi: 10.11883/bzycj-2021-0017 |
[6] | ZHANG Jijun, ZHANG Dongliang, ZHAO Jianwei, ZHANG Baoguo, CUI Yunxiao. Study on measurement of gas temperature and pressure after explosion in closed cavity at small-scaled distance[J]. Explosion And Shock Waves, 2019, 39(2): 024103. doi: 10.11883/bzycj-2018-0039 |
[7] | LIU Bin, LI Cheng, WANG Ruixing, CAO Qiwei, YANG Xianjun. Electromagnetic pulse driven liner implosion and compression of magnetized target[J]. Explosion And Shock Waves, 2018, 38(3): 688-695. doi: 10.11883/bzycj-2016-0133 |
[8] | ZHANG You-jun, GU Yan, PEI Xiao-yang, DU Jin-mei, YANG Jia, YUYin. Designofdrivingplanarflyerbynetworkdetonationtechnique[J]. Explosion And Shock Waves, 2012, 32(5): 542-546. doi: 10.11883/1001-1455(2012)05-0542-05 |
[9] | HUANG Lian, ZHANG Jin, ZHA Chang-song, CHEN Xian-gang, WANG Hui-juan. Passive-shock-isolationtechnologiesbased onAlfoamenergyabsorbers[J]. Explosion And Shock Waves, 2011, 31(6): 606-611. doi: 10.11883/1001-1455(2011)06-0606-06 |
[10] | CHEN Guang-hua, LIU Shou-xian, LI Ze-ren, LI Tao, MENG Jian-hua, GUO Jiang-jian, LIU Qiao. Applicationanalysisofangulardispersion Fabry-Perotvelocityinterferometry[J]. Explosion And Shock Waves, 2011, 31(6): 585-591. doi: 10.11883/1001-1455(2011)06-0585-07 |
[11] | ZHANG Xian-feng, CHEN Hui-wu, HE Yong, HUANG Zheng-xiang. Study on a tandem shaped charge technique to reinforce concrete[J]. Explosion And Shock Waves, 2008, 28(3): 207-302. doi: 10.11883/1001-1455(2008)03-0207-06 |
[12] | ZHAO Ji-bo, ZHAO Feng, TAN Duo-wang, SUN Yong-qiang, WANG Guang-jun, GONG Yan-qing, JI Zong-de. Research on load technique for rocket sled[J]. Explosion And Shock Waves, 2007, 27(6): 572-576. doi: 10.11883/1001-1455(2007)06-0572-05 |
[13] | ZHAO Hui-ying, SHEN Zhao-wu, LIU Tian-sheng. On the integrated technology of reactive armors with composite ceramic armors[J]. Explosion And Shock Waves, 2006, 26(1): 21-26. doi: 10.11883/1001-1455(2006)01-0021-06 |
[14] | GUI Yu-lin, SUN Cheng-wei, LI Qiang, ZHANG Guang-sheng. Experimental studies on dynamic tension of metal ring by electromagnetic loading[J]. Explosion And Shock Waves, 2006, 26(6): 481-485. doi: 10.11883/1001-1455(2006)06-0481-05 |
[15] | SONG Sheng-yi, YANG Li-bing, CHEN Gang, OU-YANG kai, SUN Cheng-wei. Experiments and numerically modeling of dynamic buckling of magnetically imploding metallic liner[J]. Explosion And Shock Waves, 2005, 25(5): 423-429. doi: 10.11883/1001-1455(2005)05-0423-07 |