Citation: | WANG Zhiliang, YU Langlang. Analysis on true triaxial mechanical properties of deep marbleby using a discrete element-finite difference coupling method[J]. Explosion And Shock Waves, 2024, 44(7): 074202. doi: 10.11883/bzycj-2023-0394 |
[1] |
MA T H, TANG C A, TANG S B, et al. Rockburst mechanism and prediction based on microseismic monitoring [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 110: 177–188. DOI: 10.1016/j.ijrmms.2018.07.016.
|
[2] |
SI X F, LI X B, GONG F Q, et al. Experimental investigation on rockburst process and characteristics of a circular opening in layered rock under three-dimensional stress conditions [J]. Tunnelling and Underground Space Technology, 2022, 127: 104603. DOI: 10.1016/j.tust.2022.104603.
|
[3] |
ZHENG G Q, TANG Y H, ZHANG Y, et al. Study on failure difference of hard rock based on a comparison between the conventional triaxial test and true triaxial test [J]. Frontiers in Earth Science, 2022, 10: 923611. DOI: 10.3389/feart.2022.923611.
|
[4] |
HAN Z Y, LI D Y, ZHOU T, et al. Experimental study of stress wave propagation and energy characteristics across rock specimens containing cemented mortar joint with various thicknesses [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 131: 104352. DOI: 10.1016/j.ijrmms.2020.104352.
|
[5] |
SUN B, CHEN R, PING Y, et al. Dynamic response of rock-like materials based on SHPB pulse waveform characteristics [J]. Materials, 2021, 15(1): 210. DOI: 10.3390/ma15010210.
|
[6] |
刘晓辉, 张茹, 刘建锋. 不同应变率下煤岩冲击动力试验研究 [J]. 煤炭学报, 2012, 37(9): 1528–1534. DOI: 10.13225/j.cnki.jccs.2012.09.022.
LIU X H, ZHANG R, LIU J F. Dynamic test study of coal rock under different strain rates [J]. Journal of China Coal Society, 2012, 37(9): 1528–1534. DOI: 10.13225/j.cnki.jccs.2012.09.022.
|
[7] |
刘晓辉, 薛洋, 郑钰, 等. 冲击荷载下煤岩破碎过程能量释放研究 [J]. 岩石力学与工程学报, 2021, 40(S2): 3201–3211. DOI: 10.13722/j.cnki.jrme.2021.0214.
LIU X H, XUE Y, ZHENG Y, et al. Research on energy release in coal rock fragmentation process under impact load [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3201–3211. DOI: 10.13722/j.cnki.jrme.2021.0214.
|
[8] |
LI D Y, HAN Z Y, SUN X L, et al. Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests [J]. Rock Mechanics and Rock Engineering, 2019, 52(6): 1623–1643. DOI: 10.1007/s00603-018-1652-5.
|
[9] |
徐松林, 王鹏飞, 赵坚, 等. 基于三维Hopkinson杆的混凝土动态力学性能研究 [J]. 爆炸与冲击, 2017, 37(2): 180–185. DOI: 10.11883/1001-1455(2017)02-0180-06.
XU S L, WANG P F, ZHAO J, et al. Dynamic behavior of concrete under static triaxial loading using 3D-Hopkinson bar [J]. Explosion and Shock Waves, 2017, 37(2): 180–185. DOI: 10.11883/1001-1455(2017)02-0180-06.
|
[10] |
LUO Y, GONG H L, HUANG J H, et al. Dynamic cumulative damage characteristics of deep-buried granite from Shuangjiangkou hydropower station under true triaxial constraint [J]. International Journal of Impact Engineering, 2022, 165: 104215. DOI: 10.1016/j.ijimpeng.2022.104215.
|
[11] |
袁良柱, 苗春贺, 单俊芳, 等. 冲击下混凝土试样应变率效应和惯性效应探讨 [J]. 爆炸与冲击, 2022, 42(1): 013101. DOI: 10.11883/bzycj-2021-0114.
YUAN L Z, MIAO C H, SHAN J F, et al. On strain-rate and inertia effects of concrete samples under impact [J]. Explosion and Shock Waves, 2022, 42(1): 013101. DOI: 10.11883/bzycj-2021-0114.
|
[12] |
XU S L, SHAN J F, ZHANG L, et al. Dynamic compression behaviors of concrete under true triaxial confinement: an experimental technique [J]. Mechanics of Materials, 2020, 140: 103220. DOI: 10.1016/j.mechmat.2019.103220.
|
[13] |
CHEN M D, XU S L, YUAN L Z, et al. Influence of stress state on dynamic behaviors of concrete under true triaxial confinements [J]. International Journal of Mechanical Sciences, 2023, 253: 108399. DOI: 10.1016/j.ijmecsci.2023.108399.
|
[14] |
HAERI H, SARFARAZI V, ZHU Z M, et al. The effect of particle size on the edge notched disk (END) using particle flow code in three dimension [J]. Smart Structures and Systems, 2018, 22(6): 663–673. DOI: 10.12989/sss.2018.22.6.663.
|
[15] |
CHANG L F, KONIETZKY H. Application of the Mohr-Coulomb yield criterion for rocks with multiple joint sets using fast Lagrangian analysis of continua 2D (FLAC2D) software [J]. Energies, 2018, 11(3): 614. DOI: 10.3390/en11030614.
|
[16] |
JIA M C, YANG Y, LIU B, et al. PFC/FLAC coupled simulation of dynamic compaction in granular soils [J]. Granular Matter, 2018, 20(4): 76. DOI: 10.1007/s10035-018-0841-y.
|
[17] |
丛怡, 丛宇, 张黎明, 等. 大理岩加、卸荷破坏过程的三维颗粒流模拟 [J]. 岩土力学, 2019, 40(3): 1179–1186, 1212. DOI: 10.16285/j.rsm.2018.0262.
CONG Y, CONG Y, ZHANG L M, et al. 3D particle flow simulation of loading-unloading failure process of marble [J]. Rock and Soil Mechanics, 2019, 40(3): 1179–1186, 1212. DOI: 10.16285/j.rsm.2018.0262.
|
[18] |
牛林新, 辛酉阳. 基于正交设计的颗粒流模型宏细观参数相关分析: 以岩石单轴压缩数值试验为例 [J]. 人民长江, 2015, 46(16): 53–57, 71. DOI: 10.16232/j.cnki.1001-4179.2015.16.013.
NIU L X, XIN Y Y. Analysis on relationship between macro-parameters and micro-parameters in PFC2D model based on orthogonal design: case of rock uniaxial compression numerical test [J]. Yangtze River, 2015, 46(16): 53–57, 71. DOI: 10.16232/j.cnki.1001-4179.2015.16.013.
|
[19] |
丛宇, 王在泉, 郑颖人, 等. 基于颗粒流原理的岩石类材料细观参数的试验研究 [J]. 岩土工程学报, 2015, 37(6): 1031–1040. DOI: 10.11779/CJGE201506009.
CONG Y, WANG Z Q, ZHENG Y R, et al. Experimental study on microscopic parameters of brittle materials based on particle flow theory [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1031–1040. DOI: 10.11779/CJGE201506009.
|
[20] |
ZHAO R, TAO M, WU C Q, et al. Study on size and load rate effect of dynamic fragmentation and mechanical properties of marble sphere [J]. Engineering Failure Analysis, 2022, 142: 106814. DOI: 10.1016/j.engfailanal.2022.106814.
|
[21] |
LIU K, ZHANG Q B, WU G, et al. Dynamic mechanical and fracture behaviour of sandstone under multiaxial loads using a triaxial Hopkinson bar [J]. Rock Mechanics and Rock Engineering, 2019, 52(7): 2175–2195. DOI: 10.1007/s00603-018-1691-y.
|
[22] |
QI C Z, WANG M Y, WANG Z F, et al. Study on the coupling effect of sample size and strain rate on rock compressive strength [J]. Rock Mechanics and Rock Engineering, 2023, 56(7): 5103–5114. DOI: 10.1007/s00603-023-03309-z.
|
[23] |
HU W R, LIU K, POTYONDY D O, et al. 3D continuum-discrete coupled modelling of triaxial Hopkinson bar tests on rock under multiaxial static-dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 134: 104448. DOI: 10.1016/j.ijrmms.2020.104448.
|
[24] |
许东俊, 耿乃光. 岩石强度随中间主应力变化规律 [J]. 固体力学学报, 1985, 6(1): 72–80. DOI: 10.19636/j.cnki.cjsm42-1250/o3.1985.01.007.
XU D J, GENG N G. The variation law of rock strength with increase of intermediate principal stress [J]. Acta Mechanica Solida Sinica, 1985, 6(1): 72–80. DOI: 10.19636/j.cnki.cjsm42-1250/o3.1985.01.007.
|
[25] |
周喻, 吴顺川, 许学良, 等. 岩石破裂过程中声发射特性的颗粒流分析 [J]. 岩石力学与工程学报, 2013, 32(5): 951–959. DOI: 10.3969/j.issn.1000-6915.2013.05.013.
ZHOU Y, WU S C, XU X L, et al. Particle flow analysis of acoustic emission characteristics during rock failure process [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(5): 951–959. DOI: 10.3969/j.issn.1000-6915.2013.05.013.
|
[26] |
SONG B, CHEN W. Energy for specimen deformation in a split Hopkinson pressure bar experiment [J]. Experimental Mechanics, 2006, 46(3): 407–410. DOI: 10.1007/s11340-006-6420-x.
|