Citation: | CHEN Jianliang, YANG Pu, LI Jicheng, CHEN Gang, DENG Hongjian, FAN Zhigeng. Numerical simulation on the deflection behavior of large caliber conical nose projectile at oblique high-speed water entry[J]. Explosion And Shock Waves, 2024, 44(7): 073301. doi: 10.11883/bzycj-2023-0398 |
[1] |
VON KARMAN T H. The impact on seaplane floats during landing: NACA technical note No. 321 [R]. Washington: NACA, 1929.
|
[2] |
LOGVINOVICH G V. Hydrodynamics of flows with free boundaries [M]. Kiev: Naukova Dumka, 1969.
|
[3] |
MAY A, WOODHULL J C. Drag coefficients of steel spheres entering water vertically [J]. Journal of Applied Physics, 1948, 19(12): 1109–1121. DOI: 10.1063/1.1715027.
|
[4] |
陈先富. 弹丸入水空穴的试验研究 [J]. 爆炸与冲击, 1985, 5(4): 70–73.
CHEN X F. Experimental studies on the cavitation phenomena as a pellet entering water [J]. Explosion and Shock Waves, 1985, 5(4): 70–73.
|
[5] |
张伟, 郭子涛, 肖新科, 等. 弹体高速入水特性实验研究 [J]. 爆炸与冲击, 2011, 31(6): 579–584. DOI: 10.11883/1001-1455(2011)06-0579-06.
ZHANG W, GUO Z T, XIAO X K, et al. Experimental investigations on behaviors of projectile high-speed water entry [J]. Explosion and Shock Waves, 2011, 31(6): 579–584. DOI: 10.11883/1001-1455(2011)06-0579-06.
|
[6] |
郭子涛, 张伟, 郭钊, 等. 截卵形弹水平入水的速度衰减及空泡扩展特性 [J]. 爆炸与冲击, 2017, 37(4): 727–733. DOI: 10.11883/1001-1455(2017)04-0727-07.
GUO Z T, ZHANG W, GUO Z, et al. Characteristics of velocity attenuation and cavity expansion induced by horizontal water-entry of truncated-ogive nosed projectiles [J]. Explosion and Shock Waves, 2017, 37(4): 727–733. DOI: 10.11883/1001-1455(2017)04-0727-07.
|
[7] |
刘思华, 王占莹, 李利剑, 等. 头型对射弹高速入水稳定性的影响 [J]. 航空学报, 2023, 44(21): 528437. DOI: 10.7527/S1000-6893.2023.28437.
LIU S H, WANG Z Y, LI L J, et al. Influence of nose shapes on high-speed water entry stability of projectile [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528437. DOI: 10.7527/S1000-6893.2023.28437.
|
[8] |
王云, 袁绪龙, 吕策. 弹体高速入水弯曲弹道实验研究 [J]. 兵工学报, 2014, 35(12): 1998–2002. DOI: 10.3969/j.issn.1000-1093.2014.12.010.
WANG Y, YUAN X L, LV C. Experimental research on curved trajectory of high-speed water-entry missile [J]. Acta Armamentarii, 2014, 35(12): 1998–2002. DOI: 10.3969/j.issn.1000-1093.2014.12.010.
|
[9] |
SHI Y, HUA Y, PAN G. Experimental study on the trajectory of projectile water entry with asymmetric nose shape [J]. Physics of Fluids, 2020, 32(12): 122119. DOI: 10.1063/5.0033906.
|
[10] |
马庆鹏, 魏英杰, 王聪, 等. 不同头型运动体高速入水空泡数值模拟 [J]. 哈尔滨工业大学学报, 2014, 46(11): 24–29. DOI: 10.11918/j.issn.0367-6234.2014.11.004.
MA Q P, WEI Y J, WANG C, et al. Numerical simulation of high-speed water entry cavity of cylinders [J]. Journal of Harbin Institute of Technology, 2014, 46(11): 24–29. DOI: 10.11918/j.issn.0367-6234.2014.11.004.
|
[11] |
GAO J G, CHEN Z H, HUANG Z G, et al. Numerical investigations on the oblique water entry of high-speed projectiles [J]. Applied Mathematics and Computation, 2019, 362: 124547. DOI: 10.1016/j.amc.2019.06.061.
|
[12] |
CHANG Y N, TONG A Y. A numerical study on water entry of cylindrical projectiles [J]. Physics of Fluids, 2021, 33(9): 093304. DOI: 10.1063/5.0059892.
|
[13] |
肖海燕, 罗松, 朱珠, 等. 高速射弹小角度入水弹道特性研究 [J]. 北京理工大学学报, 2019, 39(8): 784–791. DOI: 10.15918/j.tbit1001-0645.2019.08.003.
XIAO H Y, LUO S, ZHU Z, et al. Trajectory and cavitation characteristics of high-speed projectiles at small angle of water entry [J]. Transactions of Beijing Institute of Technology, 2019, 39(8): 784–791. DOI: 10.15918/j.tbit1001-0645.2019.08.003.
|
[14] |
黄振贵, 王瑞琦, 陈志华, 等. 90°锥头弹丸不同速度下垂直入水冲击引起的空泡特性 [J]. 爆炸与冲击, 2018, 38(6): 1189–1199. DOI: 10.11883/bzycj-2018-0115.
HUANG Z G, WANG R Q, CHEN Z H, et al. Experimental study of cavity characteristic induced by vertical water entry impact of a projectile with a 90° cone-shaped head at different velocities [J]. Explosion and Shock Waves, 2018, 38(6): 1189–1199. DOI: 10.11883/bzycj-2018-0115.
|
[15] |
胡明勇, 张志宏, 刘巨斌, 等. 低亚声速射弹垂直入水的流体与固体耦合数值计算研究 [J]. 兵工学报, 2018, 39(3): 560–568. DOI: 10.3969/j.issn.1000-1093.2018.03.018.
HU M Y, ZHANG Z H, LIU J B, et al. Fluid-solid coupling numerical simulation on vertical water entry of projectile at low subsonic speed [J]. Acta Armamentarii, 2018, 39(3): 560–568. DOI: 10.3969/j.issn.1000-1093.2018.03.018.
|
[16] |
GUO Z T, ZHANG W, XIAO X K, et al. An investigation into horizontal water entry behaviors of projectiles with different nose shapes [J]. International Journal of Impact Engineering, 2012, 49: 43–60. DOI: 10.1016/j.ijimpeng.2012.04.004.
|
[17] |
SONG Z J, DUAN W Y, XU G D, et al. Experimental and numerical study of the water entry of projectiles at high oblique entry speed [J]. Ocean Engineering, 2020, 211: 107574. DOI: 10.1016/j.oceaneng.2020.107574.
|
[18] |
李佳川, 魏英杰, 王聪, 等. 不同扰动角速度高速射弹入水弹道特性 [J]. 哈尔滨工业大学学报, 2017, 49(4): 131–136. DOI: 10.11918/j.issn.0367-6234.201512058.
LI J C, WEI Y J, WANG C, et al. Water entry trajectory characteristics of high-speed projectiles with various turbulent angular velocity [J]. Journal of Harbin Institute of Technology, 2017, 49(4): 131–136. DOI: 10.11918/j.issn.0367-6234.201512058.
|
[19] |
汪振, 吴茂林, 戴文留. 大口径弹体高速入水载荷特性研究 [J]. 弹道学报, 2020, 32(1): 15–22. DOI: 10.12115/j.issn.1004-499X(2020)01-003.
WANG Z, WU M L, DAI W L. Study on load characteristics of high-speed water-entry of large caliber projectile [J]. Journal of Ballistics, 2020, 32(1): 15–22. DOI: 10.12115/j.issn.1004-499X(2020)01-003.
|
[20] |
孙玉松, 周穗华, 张晓兵, 等. 基于多介质ALE方法的大型弹体入水载荷特性研究 [J]. 海军工程大学学报, 2019, 31(6): 101–106. DOI: 10.7495/j.issn.1009-3486.2019.06.019.
SUN Y S, ZHOU S H, ZHANG X B, et al. On water-impact load of heavy projectiles base on multi-material ALE method [J]. Journal of Naval University of Engineering, 2019, 31(6): 101–106. DOI: 10.7495/j.issn.1009-3486.2019.06.019.
|
[21] |
张斌, 李继承, 陈建良, 等. 构型弹体跌落冲击载荷及结构响应特性 [J]. 爆炸与冲击, 2023, 43(3): 033201. DOI: 10.11883/bzycj-2022-0098.
ZHANG B, LI J C, CHEN J L, et al. Loading characteristics and structural response of a warhead during drop impact [J]. Explosion and Shock Waves, 2023, 43(3): 033201. DOI: 10.11883/bzycj-2022-0098.
|
[22] |
张伟, 肖新科, 魏刚. 7A04铝合金的本构关系和失效模型 [J]. 爆炸与冲击, 2011, 31(1): 81–87. DOI: 10.11883/1001-1455(2011)01-0081-07.
ZHANG W, XIAO X K, WEI G. Constitutive relation and fracture model of 7A04 aluminum alloy [J]. Explosion and Shock Waves, 2011, 31(1): 81–87. DOI: 10.11883/1001-1455(2011)01-0081-07.
|