Volume 44 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
CHEN Jianliang, YANG Pu, LI Jicheng, CHEN Gang, DENG Hongjian, FAN Zhigeng. Numerical simulation on the deflection behavior of large caliber conical nose projectile at oblique high-speed water entry[J]. Explosion And Shock Waves, 2024, 44(7): 073301. doi: 10.11883/bzycj-2023-0398
Citation: CHEN Jianliang, YANG Pu, LI Jicheng, CHEN Gang, DENG Hongjian, FAN Zhigeng. Numerical simulation on the deflection behavior of large caliber conical nose projectile at oblique high-speed water entry[J]. Explosion And Shock Waves, 2024, 44(7): 073301. doi: 10.11883/bzycj-2023-0398

Numerical simulation on the deflection behavior of large caliber conical nose projectile at oblique high-speed water entry

doi: 10.11883/bzycj-2023-0398
  • Received Date: 2023-11-02
  • Rev Recd Date: 2023-12-26
  • Available Online: 2024-03-04
  • Publish Date: 2024-07-15
  • Integrated with a high-velocity oblique water entry test of a large caliber conical nose projectile, the deflection behavior of the projectile obliquely entering water was studied based on the arbitrary Lagrange-Euler (ALE) fluid-structure coupling method. Firstly, based on the experiment of a projectile impacting an inclined water tank at a high velocity, a finite element model was established to simulate the corresponding response characteristics, and the rationality of the numerical model and related method was verified. Secondly, the variation of the contact force mode and load characteristics of the projectile when the water entry velocity was 500 m/s was analyzed, and the corresponding mechanism was discussed. In addition, the influence of water entry angle on the deflection behavior of the projectile was investigated. The related analysis demonstrates that the projectile will deflect upward due to the effect of pitch moment, and the deflection velocity increases first and then decreases gradually during the entry process. The variation trends of deflection degrees are different within different entry angle ranges. When the entry angle is less than 15º, the projectile jumps usually out of the water. When the entry angle is in the range from 30º to 60º, the deflection trend of the projectile is almost the same, i.e., the projectile rotates from the initial tilted state to a horizontal state, then to a vertical state, and moves finally downwards with its nose in the opposite direction to the initial water entry direction. When the entry angle increases to 75º, the projectile cannot continue to rotate to a vertical state after it rotates to a horizontal state, but instead moves downwards in a tilted state with its nose facing upwards. Under different water entry angles, the axial force exerted on the projectile is negative, leading to a continuous decrease in the projectile velocity. Comparatively, the transverse force is positive, and the peak value decreases with increasing water entry angle. Moreover, the penetration depth of the projectile increases with the increase of entry angle, and it almost shows an exponential relationship.
  • loading
  • [1]
    VON KARMAN T H. The impact on seaplane floats during landing: NACA technical note No. 321 [R]. Washington: NACA, 1929.
    [2]
    LOGVINOVICH G V. Hydrodynamics of flows with free boundaries [M]. Kiev: Naukova Dumka, 1969.
    [3]
    MAY A, WOODHULL J C. Drag coefficients of steel spheres entering water vertically [J]. Journal of Applied Physics, 1948, 19(12): 1109–1121. DOI: 10.1063/1.1715027.
    [4]
    陈先富. 弹丸入水空穴的试验研究 [J]. 爆炸与冲击, 1985, 5(4): 70–73.

    CHEN X F. Experimental studies on the cavitation phenomena as a pellet entering water [J]. Explosion and Shock Waves, 1985, 5(4): 70–73.
    [5]
    张伟, 郭子涛, 肖新科, 等. 弹体高速入水特性实验研究 [J]. 爆炸与冲击, 2011, 31(6): 579–584. DOI: 10.11883/1001-1455(2011)06-0579-06.

    ZHANG W, GUO Z T, XIAO X K, et al. Experimental investigations on behaviors of projectile high-speed water entry [J]. Explosion and Shock Waves, 2011, 31(6): 579–584. DOI: 10.11883/1001-1455(2011)06-0579-06.
    [6]
    郭子涛, 张伟, 郭钊, 等. 截卵形弹水平入水的速度衰减及空泡扩展特性 [J]. 爆炸与冲击, 2017, 37(4): 727–733. DOI: 10.11883/1001-1455(2017)04-0727-07.

    GUO Z T, ZHANG W, GUO Z, et al. Characteristics of velocity attenuation and cavity expansion induced by horizontal water-entry of truncated-ogive nosed projectiles [J]. Explosion and Shock Waves, 2017, 37(4): 727–733. DOI: 10.11883/1001-1455(2017)04-0727-07.
    [7]
    刘思华, 王占莹, 李利剑, 等. 头型对射弹高速入水稳定性的影响 [J]. 航空学报, 2023, 44(21): 528437. DOI: 10.7527/S1000-6893.2023.28437.

    LIU S H, WANG Z Y, LI L J, et al. Influence of nose shapes on high-speed water entry stability of projectile [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528437. DOI: 10.7527/S1000-6893.2023.28437.
    [8]
    王云, 袁绪龙, 吕策. 弹体高速入水弯曲弹道实验研究 [J]. 兵工学报, 2014, 35(12): 1998–2002. DOI: 10.3969/j.issn.1000-1093.2014.12.010.

    WANG Y, YUAN X L, LV C. Experimental research on curved trajectory of high-speed water-entry missile [J]. Acta Armamentarii, 2014, 35(12): 1998–2002. DOI: 10.3969/j.issn.1000-1093.2014.12.010.
    [9]
    SHI Y, HUA Y, PAN G. Experimental study on the trajectory of projectile water entry with asymmetric nose shape [J]. Physics of Fluids, 2020, 32(12): 122119. DOI: 10.1063/5.0033906.
    [10]
    马庆鹏, 魏英杰, 王聪, 等. 不同头型运动体高速入水空泡数值模拟 [J]. 哈尔滨工业大学学报, 2014, 46(11): 24–29. DOI: 10.11918/j.issn.0367-6234.2014.11.004.

    MA Q P, WEI Y J, WANG C, et al. Numerical simulation of high-speed water entry cavity of cylinders [J]. Journal of Harbin Institute of Technology, 2014, 46(11): 24–29. DOI: 10.11918/j.issn.0367-6234.2014.11.004.
    [11]
    GAO J G, CHEN Z H, HUANG Z G, et al. Numerical investigations on the oblique water entry of high-speed projectiles [J]. Applied Mathematics and Computation, 2019, 362: 124547. DOI: 10.1016/j.amc.2019.06.061.
    [12]
    CHANG Y N, TONG A Y. A numerical study on water entry of cylindrical projectiles [J]. Physics of Fluids, 2021, 33(9): 093304. DOI: 10.1063/5.0059892.
    [13]
    肖海燕, 罗松, 朱珠, 等. 高速射弹小角度入水弹道特性研究 [J]. 北京理工大学学报, 2019, 39(8): 784–791. DOI: 10.15918/j.tbit1001-0645.2019.08.003.

    XIAO H Y, LUO S, ZHU Z, et al. Trajectory and cavitation characteristics of high-speed projectiles at small angle of water entry [J]. Transactions of Beijing Institute of Technology, 2019, 39(8): 784–791. DOI: 10.15918/j.tbit1001-0645.2019.08.003.
    [14]
    黄振贵, 王瑞琦, 陈志华, 等. 90°锥头弹丸不同速度下垂直入水冲击引起的空泡特性 [J]. 爆炸与冲击, 2018, 38(6): 1189–1199. DOI: 10.11883/bzycj-2018-0115.

    HUANG Z G, WANG R Q, CHEN Z H, et al. Experimental study of cavity characteristic induced by vertical water entry impact of a projectile with a 90° cone-shaped head at different velocities [J]. Explosion and Shock Waves, 2018, 38(6): 1189–1199. DOI: 10.11883/bzycj-2018-0115.
    [15]
    胡明勇, 张志宏, 刘巨斌, 等. 低亚声速射弹垂直入水的流体与固体耦合数值计算研究 [J]. 兵工学报, 2018, 39(3): 560–568. DOI: 10.3969/j.issn.1000-1093.2018.03.018.

    HU M Y, ZHANG Z H, LIU J B, et al. Fluid-solid coupling numerical simulation on vertical water entry of projectile at low subsonic speed [J]. Acta Armamentarii, 2018, 39(3): 560–568. DOI: 10.3969/j.issn.1000-1093.2018.03.018.
    [16]
    GUO Z T, ZHANG W, XIAO X K, et al. An investigation into horizontal water entry behaviors of projectiles with different nose shapes [J]. International Journal of Impact Engineering, 2012, 49: 43–60. DOI: 10.1016/j.ijimpeng.2012.04.004.
    [17]
    SONG Z J, DUAN W Y, XU G D, et al. Experimental and numerical study of the water entry of projectiles at high oblique entry speed [J]. Ocean Engineering, 2020, 211: 107574. DOI: 10.1016/j.oceaneng.2020.107574.
    [18]
    李佳川, 魏英杰, 王聪, 等. 不同扰动角速度高速射弹入水弹道特性 [J]. 哈尔滨工业大学学报, 2017, 49(4): 131–136. DOI: 10.11918/j.issn.0367-6234.201512058.

    LI J C, WEI Y J, WANG C, et al. Water entry trajectory characteristics of high-speed projectiles with various turbulent angular velocity [J]. Journal of Harbin Institute of Technology, 2017, 49(4): 131–136. DOI: 10.11918/j.issn.0367-6234.201512058.
    [19]
    汪振, 吴茂林, 戴文留. 大口径弹体高速入水载荷特性研究 [J]. 弹道学报, 2020, 32(1): 15–22. DOI: 10.12115/j.issn.1004-499X(2020)01-003.

    WANG Z, WU M L, DAI W L. Study on load characteristics of high-speed water-entry of large caliber projectile [J]. Journal of Ballistics, 2020, 32(1): 15–22. DOI: 10.12115/j.issn.1004-499X(2020)01-003.
    [20]
    孙玉松, 周穗华, 张晓兵, 等. 基于多介质ALE方法的大型弹体入水载荷特性研究 [J]. 海军工程大学学报, 2019, 31(6): 101–106. DOI: 10.7495/j.issn.1009-3486.2019.06.019.

    SUN Y S, ZHOU S H, ZHANG X B, et al. On water-impact load of heavy projectiles base on multi-material ALE method [J]. Journal of Naval University of Engineering, 2019, 31(6): 101–106. DOI: 10.7495/j.issn.1009-3486.2019.06.019.
    [21]
    张斌, 李继承, 陈建良, 等. 构型弹体跌落冲击载荷及结构响应特性 [J]. 爆炸与冲击, 2023, 43(3): 033201. DOI: 10.11883/bzycj-2022-0098.

    ZHANG B, LI J C, CHEN J L, et al. Loading characteristics and structural response of a warhead during drop impact [J]. Explosion and Shock Waves, 2023, 43(3): 033201. DOI: 10.11883/bzycj-2022-0098.
    [22]
    张伟, 肖新科, 魏刚. 7A04铝合金的本构关系和失效模型 [J]. 爆炸与冲击, 2011, 31(1): 81–87. DOI: 10.11883/1001-1455(2011)01-0081-07.

    ZHANG W, XIAO X K, WEI G. Constitutive relation and fracture model of 7A04 aluminum alloy [J]. Explosion and Shock Waves, 2011, 31(1): 81–87. DOI: 10.11883/1001-1455(2011)01-0081-07.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)  / Tables(1)

    Article Metrics

    Article views (220) PDF downloads(125) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return