Volume 44 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
YANG Ke, LI Xuerui, JI Hong, ZHENG Kai, XING Zhixiang, JIANG Juncheng. Experiment on suppression of methane/air explosion in pipeline by modified coal gangue-sodium alginate powder[J]. Explosion And Shock Waves, 2024, 44(7): 075401. doi: 10.11883/bzycj-2023-0399
Citation: YANG Ke, LI Xuerui, JI Hong, ZHENG Kai, XING Zhixiang, JIANG Juncheng. Experiment on suppression of methane/air explosion in pipeline by modified coal gangue-sodium alginate powder[J]. Explosion And Shock Waves, 2024, 44(7): 075401. doi: 10.11883/bzycj-2023-0399

Experiment on suppression of methane/air explosion in pipeline by modified coal gangue-sodium alginate powder

doi: 10.11883/bzycj-2023-0399
  • Received Date: 2023-11-02
  • Rev Recd Date: 2023-11-20
  • Available Online: 2024-03-11
  • Publish Date: 2024-07-05
  • A kind of microporous modified coal gangue (MCG) with a rough surface and large specific surface area was obtained by roasting, acid-alkali excitation, and physical grinding of industrial solid waste coal gangue (CG) as raw material. Using MCG as the matrix, a new flame retardant sodium alginate (SA) was combined with MCG by mechanochemical technology (MCT) to prepare an efficient, environmentally friendly, and economical modified coal gangue-sodium alginate (MCG-SA) powder explosion suppressor. The three powders were characterized by thermogravimetric analysis, SEM analysis, and XRD analysis to determine their thermal decomposition characteristics, micro-morphology, and crystal phase composition. Through the SEM analysis, it can be observed that the powder is irregularly stacked with particles and has many micro-pore cracks, a rough surface, and a weakened agglomeration effect. The XRD analysis shows that there are characteristic peaks of SA and MCG in the composite powder, which proves that the combination of the two is successful. It is not difficult to see from the thermogravimetric analysis that the composite powder has both the thermogravimetric characteristics of MCG and SA, and the mass loss of thermal decomposition is as high as 67.02%, which has excellent heat absorption performance. Based on the self-built test platform, the effects of MCG, SA, and their composite powders on the explosion pressure and flame propagation speed of methane-air premixed gas under different compounding ratios and adding masses were investigated. The results show that MCG, SA and MCG-SA powders have good anti-explosion effect, and the anti-explosion ability of composite powders is better than that of single powders. Among them, the composite powder with a mass of 250 mg and SA mass fraction of 50% has the most significant synergistic inhibition effect on 9.5% methane/air explosion, and the maximum explosion pressure and maximum flame propagation velocity are reduced by 36.72% and 68.93%, respectively. The arrival time of the maximum explosion pressure and the maximum flame propagation speed are extended by 243.36% and 171.33%, respectively. The mechanism of explosion suppression of composite powder is mainly reflected in the barrier effect, heat absorption, adsorption, and consumption of free radicals. This research has certain research significance and reference value in the field of industrial environmental protection and gas explosion protection.
  • loading
  • [1]
    景国勋, 穆璐璐. 煤矿瓦斯爆炸事故统计分析及应急管理研究 [J]. 安全与环境学报, 2023, 23(10): 3657–3665. DOI: 10.13637/j.issn.1009-6094.2022.1540.

    JING G X, MU L L. Study on statistical analysis and emergency management of coal mine gas explosion accident [J]. Journal of Safety and Environment, 2023, 23(10): 3657–3665. DOI: 10.13637/j.issn.1009-6094.2022.1540.
    [2]
    汪宝发, 胡祖祥. 煤矿瓦斯爆炸事故现状统计及规律分析 [J]. 煤炭技术, 2022, 41(9): 148–151. DOI: 10.13301/j.cnki.ct.2022.09.033.

    WANG B F, HU Z X. Statistics and regular analysis of current situation of gas explosion accidents in coal mine [J]. Coal Technology, 2022, 41(9): 148–151. DOI: 10.13301/j.cnki.ct.2022.09.033.
    [3]
    程方明, 南凡, 肖旸, 等. CF3I和CO2抑制甲烷-空气爆炸实验研究 [J]. 爆炸与冲击, 2022, 42(6): 065402. DOI: 10.11883/bzycj-2021-0386.

    CHENG F M, NAN F, XIAO Y, et al. Experimental study on the suppression of methane-air explosion by CF3I and CO2 [J]. Explosion and Shock Waves, 2022, 42(6): 065402. DOI: 10.11883/bzycj-2021-0386.
    [4]
    王健, 余靖宇, 凡子尧, 等. 组合多孔介质与氮气幕协同抑制瓦斯爆炸实验研究 [J]. 爆炸与冲击, 2023, 43(10): 105402. DOI: 10.11883/bzycj-2022-0562.

    WANG J, YU J Y, FAN Z Y, et al. Experimental study on the synergistic suppression of gas explosion by combined porous media and nitrogen curtain [J]. Explosion and Shock Waves, 2023, 43(10): 105402. DOI: 10.11883/bzycj-2022-0562.
    [5]
    贾海林, 翟汝鹏, 李第辉, 等. 三种盐类超细水雾抑制管道内甲烷-空气预混气爆炸的差异性 [J]. 爆炸与冲击, 2020, 40(8): 082201. DOI: 10.11883/bzycj-2019-0456.

    JIA H L, ZHAI R P, LI D H, et al. Differences of premixed methane-air explosion in pipelines suppressed by three ultrafine water mists containing different salts [J]. Explosion and Shock Waves, 2020, 40(8): 082201. DOI: 10.11883/bzycj-2019-0456.
    [6]
    杨克, 纪虹, 邢志祥, 等. 含草酸钾的超细水雾抑制甲烷爆炸的特性 [J]. 化工学报, 2018, 69(12): 5359–5369. DOI: 10.11949/j.issn.0438-1157.20180671.

    YANG K, JI H, XING Z X, et al. Characteristics on methane explosion suppression by ultrafine water mist containing potassium oxalate [J]. CIESC Journal, 2018, 69(12): 5359–5369. DOI: 10.11949/j.issn.0438-1157.20180671.
    [7]
    余明高, 付元鹏, 郑立刚, 等. 碳酸氢钠粉体对导管泄爆过程的影响 [J]. 爆炸与冲击, 2021, 41(9): 095403. DOI: 10.11883/bzycj-2020-0437.

    YU M G, FU Y P, ZHENG L G, et al. Effect of sodium bicarbonate powder on the process of ducted venting [J]. Explosion and Shock Waves, 2021, 41(9): 095403. DOI: 10.11883/bzycj-2020-0437.
    [8]
    李孝斌, 张瑞杰, 崔沥巍, 等. 尿素抑制甲烷爆炸过程中爆炸压力与自由基变化耦合分析 [J]. 爆炸与冲击, 2020, 40(3): 032101. DOI: 10.11883/bzycj-2019-0090.

    LI X B, ZHANG R J, CUI L W, et al. Coupling analysis of explosion pressure and free radical change during methane explosion inhibited by urea [J]. Explosion and Shock Waves, 2020, 40(3): 032101. DOI: 10.11883/bzycj-2019-0090.
    [9]
    谢继标, 张嘉琪, 丁策, 等. 纳米疏水性SiO2协同作用抑制丁烷爆炸速度与压力的耦合分析 [J]. 爆炸与冲击, 2021, 41(9): 095402. DOI: 10.11883/bzycj-2021-0016.

    XIE J B, ZHANG J Q, DING C, et al. Coupling relationship between flame velocity and overpressure of butane explosion inhibited by synergistic effect of nanohydrophobic SiO2 [J]. Explosion and Shock Waves, 2021, 41(9): 095402. DOI: 10.11883/bzycj-2021-0016.
    [10]
    郝峥, 许开立, 张毓媛, 等. Al(OH)3对聚丙烯腈粉火焰传播特性影响研究 [J]. 爆炸与冲击, 2022, 42(6): 065401. DOI: 10.11883/bzycj-2021-0322.

    HAO Z, XU K L, ZHANG Y Y, et al. Study on the effect of Al(OH)3 on the flame propagation characteristics of polyacrylonitrile powder [J]. Explosion and Shock Waves, 2022, 42(6): 065401. DOI: 10.11883/bzycj-2021-0322.
    [11]
    颜轲, 孟祥豹, 潘智超, 等. KH2PO4/SiO2复合粉体抑制铝粉爆燃效果及机理分析 [J]. 爆炸与冲击, 2022, 42(6): 062101. DOI: 10.11883/bzycj-2021-0190.

    YAN K, MENG X B, PAN Z C, et al. Effect and mechanism of KH2PO4/SiO2 composite powder in inhibiting aluminum dust deflagration [J]. Explosion and Shock Waves, 2022, 42(6): 062101. DOI: 10.11883/bzycj-2021-0190.
    [12]
    袁必和, 陶红吉, 孙亚如, 等. 多孔矿物-聚磷酸铵对甲烷爆炸的协同抑制研究 [J]. 中国安全科学学报, 2021, 31(3): 41–46. DOI: 10.16265/j.cnki.issn1003-3033.2021.03.006.

    YUAN B H, TAO H J, SUN Y R, et al. Study on synergistic suppression of methane explosion by porous mineral materials-ammonium polyphosphate composite powder [J]. China Safety Science Journal, 2021, 31(3): 41–46. DOI: 10.16265/j.cnki.issn1003-3033.2021.03.006.
    [13]
    WANG Q H, JIANG X X, DENG J, et al. Analysis of the effectiveness of Mg(OH)2/NH4H2PO4 composite dry powder in suppressing methane explosion [J]. Powder Technology, 2023, 417: 118255. DOI: 10.1016/j.powtec.2023.118255.
    [14]
    王小云, 牛艳霞. 煤矸石研究综述: 分类、危害及综合利用 [J]. 化工矿物与加工, 2023, 52(11): 18–25. DOI: 10.16283/j.cnki.hgkwyjg.2023.11.003.

    WANG X Y, NIU Y X. Review of research on coal gangue with its classification, hazards and comprehensive utilization [J]. Industrial Minerals Processing, 2023, 52(11): 18–25. DOI: 10.16283/j.cnki.hgkwyjg.2023.11.003.
    [15]
    李启辉. 煤矸石的性质及综合利用研究进展 [J]. 应用化工, 2023, 52(5): 1576–1581. DOI: 10.16581/j.cnki.issn1671-3206.20230324.006.

    LI Q H. Research progress on properties and comprehensive utilization of coal gangue [J]. Applied Chemical Industry, 2023, 52(5): 1576–1581. DOI: 10.16581/j.cnki.issn1671-3206.20230324.006.
    [16]
    李振, 雪佳, 朱张磊, 等. 煤矸石综合利用研究进展 [J]. 矿产保护与利用, 2021, 41(6): 165–178. DOI: 10.13779/j.cnki.issn1001-0076.2021.06.020.

    LI Z, XUE J, ZHU Z L, et al. Research progress on comprehensive utilization of coal gangue [J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 165–178. DOI: 10.13779/j.cnki.issn1001-0076.2021.06.020.
    [17]
    NABIPOUR H, WANG X, SONG L, et al. A fully bio-based coating made from alginate, chitosan and hydroxyapatite for protecting flexible polyurethane foam from fire [J]. Carbohydrate Polymers, 2020, 246: 116641. DOI: 10.1016/j.carbpol.2020.116641.
    [18]
    石晶, 冯云, 包杰, 等. 天然生物质材料的制备、性质与应用(Ⅲ)——医护两用的糖胺聚糖: 透明质酸 [J]. 日用化学工业, 2022, 52(3): 237–244. DOI: 10.3969/j.issn.1001-1803.2022.03.002.

    SHI J, FENG Y, BAO J, et al. Preparation, properties and applications of natural biomass materials (Ⅲ) glycosaminoglycan for medical and skin care applications: hyaluronic acid [J]. China Surfactant Detergent & Cosmetics, 2022, 52(3): 237–244. DOI: 10.3969/j.issn.1001-1803.2022.03.002.
    [19]
    LIU J, XIAO C M. Fire-retardant multilayer assembled on polyester fabric from water-soluble chitosan, sodium alginate and divalent metal ion [J]. International Journal of Biological Macromolecules, 2018, 119: 1083–1089. DOI: 10.1016/j.ijbiomac.2018.08.043.
    [20]
    ZHANG J J, JI Q, WANG F J, et al. Effects of divalent metal ions on the flame retardancy and pyrolysis products of alginate fibres [J]. Polymer Degradation and Stability, 2012, 97(6): 1034–1040. DOI: 10.1016/j.polymdegradstab.2012.03.004.
    [21]
    GAO Y J, JIN W J, LIU S F, et al. Flame retardancy and combustion performance of polysaccharide fabrics: a comparison on cotton and calcium alginate fabrics [J]. Polymer Testing, 2023, 124: 108099. DOI: 10.1016/j.polymertesting.2023.108099.
    [22]
    燕可洲. 煤基固废中铝硅酸盐矿物在碳酸钠作用下的物相转变机理 [D]. 太原: 山西大学, 2018. DOI: 10.7666/d.D01594913.

    YAN K Z. Phase transformation mechanism of aluminosilicate minerals in coal wastes calcined with sodium carbonate [D]. Taiyuan: Shanxi University, 2018. DOI: 10.7666/d.D01594913.
    [23]
    席国喜, 田圣军, 成庆堂, 等. 海藻酸钠的热分解研究 [J]. 化学世界, 2000, 41(5): 254–258. DOI: 10.19500/j.cnki.0367-6358.2000.05.009.

    XI G X, TIAN S J, CHENG Q T, et al. Studies on thermal dissociation of sodium alginate [J]. Chemical World, 2000, 41(5): 254–258. DOI: 10.19500/j.cnki.0367-6358.2000.05.009.
    [24]
    谢亚平. 海藻酸钠基多孔碳材料的制备及对水中双酚A的吸附研究 [D]. 西安: 长安大学, 2021. DOI: 10.26976/d.cnki.gchau.2021.002093.

    XIE Y P. Preparation of sodium alginate-based porous carbon for the adsorption of bisphenol a in water [D]. Xi’an: Chang’an University, 2021. DOI: 10.26976/d.cnki.gchau.2021.002093.
    [25]
    黄震, 刘姗姗, 韩宇辰, 等. 甘油对大豆分离蛋白/海藻酸钠复合膜热分解的影响 [J]. 中国印刷与包装研究, 2012, 4(1): 51–61. DOI: 10.3969/j.issn.1674-5752.2012.01.010.

    HUANG Z, LIU S S, HAN Y C, et al. Effect of glycerol on thermal decomposition of soy protein isolate-sodium alginate composite films [J]. China Printing and Packaging Study, 2012, 4(1): 51–61. DOI: 10.3969/j.issn.1674-5752.2012.01.010.
    [26]
    杨克, 王跃胜, 纪虹, 等. 管道中纳米二氧化硅、二氧化碳和七氟丙烷气固混合物抑制瓦斯爆炸的试验研究 [J]. 安全与环境工程, 2023, 30(5): 28–36. DOI: 10.13578/j.cnki.issn.1671-1556.20220875.

    YANG K, WANG Y S, JI H, et al. Experimental study of gas explosion suppression by gas-solid mixtures of silica nanoparticles, carbon dioxide and heptafluoropropane in pipelines [J]. Safety and Environmental Engineering, 2023, 30(5): 28–36. DOI: 10.13578/j.cnki.issn.1671-1556.20220875.
    [27]
    杨克, 王壮, 邢志祥, 等. 氩气协同超细水雾抑制甲烷爆炸试验研究 [J]. 中国安全科学学报, 2020, 30(7): 55–61. DOI: 10.16265/j.cnki.issn1003-3033.2020.07.009.

    YANG K, WANG Z, XING Z X, et al. Experimental study on synergistic gas explosion suppression by argon and ultra-fine water mist [J]. China Safety Science Journal, 2020, 30(7): 55–61. DOI: 10.16265/j.cnki.issn1003-3033.2020.07.009.
    [28]
    贾海林, 项海军, 李第辉, 等. 含NaCl超细水雾对不同阻塞率管道内爆炸的抑制 [J]. 爆炸与冲击, 2020, 40(4): 042201. DOI: 10.11883/bzycj-2019-0268.

    JIA H L, XIANG H J, LI D H, et al. Suppression of explosion in pipelines with different blocking ratios by ultrafine water mist containing sodium chloride [J]. Explosion and Shock Waves, 2020, 40(4): 042201. DOI: 10.11883/bzycj-2019-0268.
    [29]
    YANG K, CHEN K F, JI H, et al. Experimental study on the inhibition of methane/air explosion by modified attapulgite powder [J]. Journal of Loss Prevention in the Process Industries, 2021, 72: 104574. DOI: 10.1016/j.jlp.2021.104574.
    [30]
    WANG X, ZHANG Y S, LIU B, et al. Effectiveness and mechanism of carbamide/fly ash cenosphere with bilayer spherical shell structure as explosion suppressant of coal dust [J]. Journal of Hazardous Materials, 2019, 365: 555–564. DOI: 10.1016/j.jhazmat.2018.11.044.
    [31]
    LIU A H, LU X E, ZHOU X Y, et al. Experimental investigation on suppression of methane explosion using KHCO3/zeolite composite powder [J]. Powder Technology, 2023, 415: 118157. DOI: 10.1016/j.powtec.2022.118157.
    [32]
    YU M G, WANG X Y, ZHENG K, et al. Investigation of methane/air explosion suppression by modified montmorillonite inhibitor [J]. Process Safety and Environmental Protection, 2020, 144: 337–348. DOI: 10.1016/j.psep.2020.07.050.
    [33]
    JI H, LU R J, YANG K, et al. Experimental study on methane explosion suppression by heptafluoropropane drived modified ABC powder [J]. Process Safety and Environmental Protection, 2023, 170: 623–635. DOI: 10.1016/j.psep.2022.12.031.
    [34]
    路长, 张运鹏, 朱寒, 等. 氮气喷出对管道瓦斯爆炸的阻爆研究 [J]. 爆炸与冲击, 2020, 40(4): 042101. DOI: 10.11883/bzycj-2019-0106.

    LU C, ZHANG Y P, ZHU H, et al. The spurted nitrogen preventing the gas explosion in pipe [J]. Explosion and Shock Waves, 2020, 40(4): 042101. DOI: 10.11883/bzycj-2019-0106.
    [35]
    段玉龙, 卜云兵, 龙凤英, 等. 氮气-细水雾-滑移装置对甲烷爆炸特性的影响 [J]. 中国安全科学学报, 2022, 32(10): 83–89. DOI: 10.16265/j.cnki.issn1003-3033.2022.10.1861.

    DUAN Y L, BU Y B, LONG F Y, et al. Effect of N2-water mist-slip device on methane explosion characteristics [J]. China Safety Science Journal, 2022, 32(10): 83–89. DOI: 10.16265/j.cnki.issn1003-3033.2022.10.1861.
    [36]
    王燕, 林晨迪, 郑立刚, 等. 草酸盐粉体抑制甲烷爆炸的试验研究 [J]. 安全与环境学报, 2020, 20(4): 1327–1333. DOI: 10.13637/j.issn.1009-6094.2019.0405.

    WANG Y, LIN C D, ZHENG L G, et al. Experimental investigation into the inhibitive effect of the methane explosion via the oxalate powders [J]. Journal of Safety and Environment, 2020, 20(4): 1327–1333. DOI: 10.13637/j.issn.1009-6094.2019.0405.
    [37]
    XI Z L, LI M M, LI X, et al. Reaction mechanisms involving the hydroxyl radical in the low-temperature oxidation of coal [J]. Fuel, 2022, 314: 122732. DOI: 10.1016/j.fuel.2021.122732.
    [38]
    ZHANG X, LU B, QIAO L, et al. Study on the kinetics of chemical structure reaction in coal catalyzed by OH free radicals [J]. Energy, 2023, 285: 129553. DOI: 10.1016/j.energy.2023.129553.
    [39]
    LV J T, LI Z C, DONG R T, et al. Highly flame-retardant materials of different divalent metal ions alginate/silver phosphate: synthesis, characterizations, and synergistic phosphorus-polymetallic effects [J]. International Journal of Biological Macromolecules, 2023, 247: 125834. DOI: 10.1016/j.ijbiomac.2023.125834.
    [40]
    王燕, 程义伸, 曹建亮, 等. 核-壳型KHCO3/赤泥复合粉体的甲烷抑爆特性 [J]. 煤炭学报, 2017, 42(3): 653–658. DOI: 10.13225/j.cnki.jccs.2016.0434.

    WANG Y, CHENG Y S, CAO J L, et al. Suppression characteristics of KHCO3/red-mud composite powders with core-shell structure on methane explosion [J]. Journal of China Coal Society, 2017, 42(3): 653–658. DOI: 10.13225/j.cnki.jccs.2016.0434.
    [41]
    WANG Y, CHENG Y S, YU M G, et al. Methane explosion suppression characteristics based on the NaHCO3/red-mud composite powders with core-shell structure [J]. Journal of Hazardous Materials, 2017, 335: 84–91. DOI: 10.1016/j.jhazmat.2017.04.031.
    [42]
    郑立刚, 李刚, 王亚磊, 等. 开口阻塞比对粉体抑制甲烷爆炸的影响研究 [J]. 爆炸与冲击, 2019, 39(11): 115403. DOI: 10.11883/bzycj-2018-0228.

    ZHENG L G, LI G, WANG Y L, et al. Effect of blockage ratios on the characteristics of methane/air explosions suppressed by dry chemicals [J]. Explosion and Shock Waves, 2019, 39(11): 115403. DOI: 10.11883/bzycj-2018-0228.
    [43]
    杨克, 贾岳, 纪虹, 等. 垃圾焚烧飞灰对瓦斯爆炸压力及火焰传播的抑制作用及机理研究 [J]. 化工学报, 2023, 74(8): 3597–3607. DOI: 10.11949/0438-1157.20230740.

    YANG K, JIA Y, JI H, et al. Study on the inhibition effect and mechanism of waste incineration fly ash on gas explosion pressure and flame propagation [J]. Journal of Chemical Industry, 2023, 74(8): 3597–3607. DOI: 10.11949/0438-1157.20230740.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article Metrics

    Article views (263) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return