Citation: | QIAN Haimin, PAN Yahao, ZONG Zhouhong, GAN Lu, WU Xi, SUN Miaomiao. Experimental study on dynamic response of underground utility tunnel under ground explosion[J]. Explosion And Shock Waves, 2024, 44(7): 075102. doi: 10.11883/bzycj-2023-0400 |
[1] |
钱七虎. 建设城市地下综合管廊, 转变城市发展方式 [J]. 隧道建设, 2017, 37(6): 647–654. DOI: 10.3973/j.issn.1672-741X.2017.06.001.
QIAN Q H. To transform way of urban development by constructing underground utility tunnel [J]. Tunnel Construction, 2017, 37(6): 647–654. DOI: 10.3973/j.issn.1672-741X.2017.06.001.
|
[2] |
高徐军, 周剑, 张玉, 等. 地下综合管廊抗爆性能及加固方法研究 [J]. 工程爆破, 2023, 29(2): 145–151, 158. DOI: 10.19931/j.EB.20210409.
GAO X J, ZHOU J, ZHANG Y, et al. Study on blast resistance performance and reinforcement method of underground utility tunnel [J]. Engineering Blasting, 2023, 29(2): 145–151, 158. DOI: 10.19931/j.EB.20210409.
|
[3] |
WANG S P, LI Z, FANG Q, et al. Performance of utility tunnels under gas explosion loads [J]. Tunnelling and Underground Space Technology, 2021, 109: 103762. DOI: 10.1016/j.tust.2020.103762.
|
[4] |
XUE Y Z, CHEN G H, ZHANG Q, et al. Simulation of the dynamic response of an urban utility tunnel under a natural gas explosion [J]. Tunnelling and Underground Space Technology, 2021, 108: 103713. DOI: 10.1016/j.tust.2020.103713.
|
[5] |
MENG Q F, WU C Q, HAO H, et al. Steel fibre reinforced alkali-activated geopolymer concrete slabs subjected to natural gas explosion in buried utility tunnel [J]. Construction and Building Materials, 2020, 246: 118447. DOI: 10.1016/j.conbuildmat.2020.118447.
|
[6] |
ZHANG S H, MA H T, HUANG X M, et al. Numerical simulation on methane-hydrogen explosion in gas compartment in utility tunnel [J]. Process Safety and Environmental Protection, 2020, 140: 100–110. DOI: 10.1016/j.psep.2020.04.025.
|
[7] |
刘希亮, 李烨, 王新宇, 等. 地下管廊在燃气爆炸作用下的动力响应分析 [J]. 高压物理学报, 2018, 32(6): 064104. DOI: 10.11858/gywlxb.20180544.
LIU X L, LI Y, WANG X Y, et al. Dynamic response analysis of underground pipe gallery under gas explosion [J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 064104. DOI: 10.11858/gywlxb.20180544.
|
[8] |
刘中宪, 王治坤, 张欢欢, 等. 燃气爆炸作用下地下综合管廊动力响应模拟 [J]. 防灾减灾工程学报, 2018, 38(4): 624–632. DOI: 10.13409/j.cnki.jdpme.2018.04.005.
LIU Z X, WANG Z K, ZHANG H H, et al. Numerical simulation of blast-resistant performance of utility tunnel under gas explosion [J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(4): 624–632. DOI: 10.13409/j.cnki.jdpme.2018.04.005.
|
[9] |
ZHANG Z J, LIU Z X, ZHANG H, et al. Spatial distribution and machine learning-based prediction model of natural gas explosion loads in a utility tunnel [J]. Tunnelling and Underground Space Technology, 2023, 140: 105272. DOI: 10.1016/j.tust.2023.105272.
|
[10] |
ZHAO Y M, WU J S, ZHOU R, et al. Effects of the length and pressure relief conditions on propagation characteristics of natural gas explosion in utility tunnels [J]. Journal of Loss Prevention in the Process Industries, 2022, 75: 104679. DOI: 10.1016/j.jlp.2021.104679.
|
[11] |
WANG S P, LI Z, FANG Q, et al. Numerical simulation of overpressure loads generated by gas explosions in utility tunnels [J]. Process Safety and Environmental Protection, 2022, 161: 100–117. DOI: 10.1016/j.psep.2022.03.014.
|
[12] |
QIAN H M, ZONG Z H, WU C Q, et al. Numerical study on the behavior of utility tunnel subjected to ground surface explosion [J]. Thin-Walled Structures, 2021, 161: 107422. DOI: 10.1016/j.tws.2020.107422.
|
[13] |
ZHOU Q, HE H G, LIU S F, et al. Blast resistance evaluation of urban utility tunnel reinforced with BFRP bars [J]. Defence Technology, 2021, 17(2): 512–530. DOI: 10.1016/j.dt.2020.03.015.
|
[14] |
ZHOU Q, HE H G, LIU S F, et al. Evaluation of blast-resistant ability of shallow-buried reinforced concrete urban utility tunnel [J]. Engineering Failure Analysis, 2021, 119: 105003. DOI: 10.1016/j.engfailanal.2020.105003.
|
[15] |
周强, 周健南, 周寅智, 等. 爆炸荷载作用下浅埋综合管廊野外试验与弹性动力响应分析 [J]. 中国科学: 物理学 力学 天文学, 2020, 50(2): 024608. DOI: 10.1360/SSPMA-2019-0182.
ZHOU Q, ZHOU J N, ZHOU Y Z, et al. Field test and elastic dynamic response analysis of shallow buried utility tunnel under explosion load [J]. Scientia Sinica: Physica, Mechanica and Astronomica, 2020, 50(2): 024608. DOI: 10.1360/SSPMA-2019-0182.
|
[16] |
夏明, 汪剑辉, 刘飞, 等. 浅埋爆炸作用下综合管廊结构动力响应数值仿真研究 [J]. 防护工程, 2020, 42(5): 25–32. DOI: 10.3969/j.issn.1674-1854.2020.05.004.
XIA M, WANG J H, LIU F, et al. Numerical simulation study on dynamic response of utility tunnel structure under shallow-buried explosion [J]. Protective Engineering, 2020, 42(5): 25–32. DOI: 10.3969/j.issn.1674-1854.2020.05.004.
|
[17] |
张伟, 段亚鹏, 高永红, 等. 强动载作用下浅埋管廊结构试验研究 [J]. 信阳师范学院学报(自然科学版), 2023, 36(3): 495–501. DOI: 10.3969/j.issn.1003-0972.2023.03.025.
ZHANG W, DUAN Y P, GAO Y H, et al. Experimental study on shallow-buried utility tunnel structure under strong dynamic load [J]. Journal of Xinyang Normal University (Natural Science Edition), 2023, 36(3): 495–501. DOI: 10.3969/j.issn.1003-0972.2023.03.025.
|
[18] |
刘飞, 张昭, 辛凯, 等. 基于量纲分析的地下结构顶板外爆炸荷载分布 [J]. 防护工程, 2023, 45(3): 1–8. DOI: 10.3969/j.issn.1674-1854.2023.03.001.
LIU F, ZHANG Z, XIN K, et al. Study of blast load distribution on underground structure roof based on dimensional analysis [J]. Protective Engineering, 2023, 45(3): 1–8. DOI: 10.3969/j.issn.1674-1854.2023.03.001.
|
[19] |
QIAN H M, LI J, PAN Y H, et al. Numerical derivation of P-I diagrams for shallow buried RC box structures [J]. Tunnelling and Underground Space Technology, 2022, 124: 104454. DOI: 10.1016/j.tust.2022.104454.
|
[20] |
PAN Y H, LI J, ZONG Z H, et al. Experimental and numerical study on ground shock propagation in calcareous sand [J]. International Journal of Impact Engineering, 2023, 180: 104724. DOI: 10.1016/j.ijimpeng.2023.104724.
|
[21] |
QIAN H M, LI J, ZONG Z H, et al. Behavior of precast segmental utility tunnel under ground surface explosion: a numerical study [J]. Tunnelling and Underground Space Technology, 2021, 115: 104071. DOI: 10.1016/j.tust.2021.104071.
|
[22] |
薛伟辰, 王恒栋, 油新华, 等. 我国预制拼装综合管廊结构体系发展现状与展望 [J]. 施工技术, 2018, 47(12): 6–9. DOI: 10.7672/sgjs2018120006.
XUE W C, WANG H D, YOU X H, et al. Status and prospect of precast assembly utility tunnel structure system in China [J]. Construction Technology, 2018, 47(12): 6–9. DOI: 10.7672/sgjs2018120006.
|
[23] |
魏奇科, 王宇航, 王永超, 等. 叠合装配式地下综合管廊节点抗震性能试验研究 [J]. 建筑结构学报, 2019, 40(2): 246–254. DOI: 10.14006/j.jzjgxb.2019.02.024.
WEI Q K, WANG Y H, WANG Y C, et al. Experiment study on seismic performance of joints in prefabricated sandwich structures of utility tunnels [J]. Journal of Building Structures, 2019, 40(2): 246–254. DOI: 10.14006/j.jzjgxb.2019.02.024.
|
[24] |
张学杰. 爆炸荷载作用下FRP加固钢筋混凝土柱动态响应精细化分析及损伤评估方法研究 [D]. 天津: 天津大学, 2020: 103–104. DOI: 10.27356/d.cnki.gtjdu.2020.002916.
ZHANG X J. Research on methods for refined dynamic response analysis and damage assessment of FRP strengthened RC columns subjected to blast loading [D]. Tianjin: Tianjin University, 2020: 103–104. DOI: 10.27356/d.cnki.gtjdu.2020.002916.
|
[25] |
HAO H, HAO Y F, LI J, et al. Review of the current practices in blast-resistant analysis and design of concrete structures [J]. Advances in Structural Engineering, 2016, 19(8): 1193–1223. DOI: 10.1177/1369433216656430c.
|
[26] |
KRAUTHAMMER T. Modern protective structures [M]. Boca Raton: CRC Press, 2008: 234–236.
|
[27] |
Departments of the Army the Navy, and the Air Force. Structures to resist the effects of accidental explosions: UFC 3-340-02 [S]. Washington: US Department of Defense, 2008.
|
[1] | ZHANG Haipeng, PAN Zuanfeng, SI Doudou. Numerical simulation on dynamic response of reinforced concrete beams to secondary explosion[J]. Explosion And Shock Waves, 2024, 44(10): 101404. doi: 10.11883/bzycj-2024-0021 |
[2] | YANG Shigang, LUO Ze, XU Jiheng, FANG Qin, YANG Ya, XU Guolin, TANG Junjie. Failure modes of concrete structure under penetration and explosion[J]. Explosion And Shock Waves, 2024, 44(1): 015102. doi: 10.11883/bzycj-2023-0003 |
[3] | SONG Chunming, ZHONG Jiahe, XU Jiwei, WU Xuezhi, CHENG Yihao. Experimental study on dynamic response and failure mode transformation of reinforced concrete beams under impact[J]. Explosion And Shock Waves, 2024, 44(1): 015101. doi: 10.11883/bzycj-2023-0102 |
[4] | YE Haiwang, QIAN Zhengkun, LEI Tao, WEN Ying, LI Rui. Bedding effect and macro-micro mechanism of graphite ore dynamic mechanical properties under impact loads[J]. Explosion And Shock Waves, 2023, 43(12): 123102. doi: 10.11883/bzycj-2023-0223 |
[5] | XIA Mengtao, LI Minghong, ZONG Zhouhong, GAN Lu, HUANG Jie, LI Zhuo. Failure modes of precast segmental concrete-filled double-skin steel tube columns under large equivalent explosion[J]. Explosion And Shock Waves, 2023, 43(11): 112202. doi: 10.11883/bzycj-2022-0385 |
[6] | LI Shengtong, WANG Wei, LIANG Shifa, SANG Qinyang, ZHENG Rongyue. Dynamic response of beam-slab composite structures under long-lasting explosion shock wave load[J]. Explosion And Shock Waves, 2022, 42(7): 075103. doi: 10.11883/bzycj-2021-0495 |
[7] | ZHANG Duo, YAO Shujian, HUANG He, HU Xianlei, LIU Shuangquan, LU Fangyun. A review on internal blast damage effects of multi-box type structures[J]. Explosion And Shock Waves, 2021, 41(7): 071102. doi: 10.11883/bzycj-2020-0388 |
[8] | WU Xingxing, LIU Jianhu, WANG Jun, WANG Haikun, GAO Tao, LIU Guozhen. Experimental research on damaging characteristics of cabin model attacking from shipboard direction under close-in underwater explosion[J]. Explosion And Shock Waves, 2020, 40(11): 111405. doi: 10.11883/bzycj-2020-0066 |
[9] | WU Xingxing, WANG Jun, LIU Jianhu, LIU Guozhen, WANG Haikun. Damaging characteristics of a cabin model under close-in underwater explosion from bottom attacting[J]. Explosion And Shock Waves, 2020, 40(11): 111406. doi: 10.11883/bzycj-2020-0067 |
[10] | ZHOU Zhongxin, JIN Fengnian, YUAN Xiaojun, CHEN Hailong, ZHOU Jiannan, XU Ying, KONG Xinli. Dynamic response of underground arch structure under lateral point blast loads[J]. Explosion And Shock Waves, 2018, 38(3): 639-646. doi: 10.11883/bzycj-2016-0295 |
[11] | Ji Chong, Xu Quan-jun, Wan Wen-qian, Gao Fu-yin, Song Ke-jian. Dynamic responses of steel cylindrical shells under lateral explosion loading[J]. Explosion And Shock Waves, 2014, 34(2): 137-144. doi: 10.11883/1001-1455(2014)02-0137-08 |
[12] | Feng Hui-ping, Liu Hong-bing, Zuo Xing, Hui Lang-lang. Dynamic response of underground tunnel to explosive loading from penetration weapons in the critical collapse distance[J]. Explosion And Shock Waves, 2014, 34(5): 539-546. doi: 10.11883/1001-1455(2014)05-0539-08 |
[13] | ZhangShe-rong, WangGao-hu. Antiknockperformanceofconcretegravitydam subjectedtounderwaterexplosion[J]. Explosion And Shock Waves, 2013, 33(3): 255-263. doi: 10.11883/1001-1455(2013)03-0255-08 |
[14] | TIAN Yu-bin, LI Zhao, ZHANG Chun-wei. Dynamicresponseofreinforcedmasonrystructureunderblastload[J]. Explosion And Shock Waves, 2012, 32(6): 658-662. doi: 10.11883/1001-1455(2012)06-0658-05 |
[15] | CUI Wei, SONG Hui-fang, ZHANG She-rong. CoupledSPH-FEanalysisfordynamicresponseof boxculvertsubjectedtosubsurfaceblas[J]. Explosion And Shock Waves, 2012, 32(5): 551-556. doi: 10.11883/1001-1455(2012)05-0551-06 |
[16] | ZHAI Xi-mei, WANG Yong-hui. Dynamicresponseandexplosionreliefof reticulatedshellunderblastloading[J]. Explosion And Shock Waves, 2012, 32(4): 404-410. doi: 10.11883/1001-1455(2012)04-0404-07 |
[17] | ZHANG She-rong, WANG Gao-hui, WANG Chao, SUN Bo. Failuremodeanalysisofconcretegravitydam subjectedtounderwaterexplosion[J]. Explosion And Shock Waves, 2012, 32(5): 501-507. doi: 10.11883/1001-1455(2012)05-0501-07 |
[18] | ZHANG Qi-ling, LI Duan-you, LI Bo. Damagepropagationandfailuremodeofgravitydam subjectedtounderwaterexplosion[J]. Explosion And Shock Waves, 2012, 32(6): 609-615. doi: 10.11883/1001-1455(2012)06-0609-07 |
[19] | ZHANG Xu-hong, WANG Zhi-hua, ZHAO Long-mao. Dynamic responses of sandwich plates with aluminum honeycomb cores subjected to blast loading[J]. Explosion And Shock Waves, 2009, 29(4): 356-360. doi: 10.11883/1001-1455(2009)04-0356-05 |
[20] | DU Xiu-li, LIAO Wei-zhang, TIAN Zhi-min, LI Liang. Dynamic response analysis of underground structures under explosion-induced loads[J]. Explosion And Shock Waves, 2006, 26(5): 474-480. doi: 10.11883/1001-1455(2006)05-0474-07 |