Citation: | XIE Yushan, XU Songlin, YUAN Liangzhu, CHEN Meiduo, WANG Pengfei. Thermal relaxation responses of graded materials satisfing power law[J]. Explosion And Shock Waves, 2024, 44(8): 081421. doi: 10.11883/bzycj-2023-0437 |
[1] |
SALEH B, JIANG J H, FATHI R, et al. 30 years of functionally graded materials: an overview of manufacturing methods, applications and future challenges [J]. Composites Part B: Engineering, 2020, 201: 108376. DOI: 10.1016/j.compositesb.2020.108376.
|
[2] |
GHASEMI M H, HOSEINZADEH S, MEMON S. A dual-phase-lag (DPL) transient non-Fourier heat transfer analysis of functional graded cylindrical material under axial heat flux [J]. International Communications in Heat and Mass Transfer, 2022, 131: 105858. DOI: 10.1016/j.icheatmasstransfer.2021.105858.
|
[3] |
DAI H L, RAO Y N, DAI T. A review of recent researches on FGM cylindrical structures under coupled physical interactions, 2000–2015 [J]. Composite Structures, 2016, 152: 199–225. DOI: 10.1016/j.compstruct.2016.05.042.
|
[4] |
PARIHAR R S, SETTI S G, SAHU R K. Recent advances in the manufacturing processes of functionally graded materials: a review [J]. Science and Engineering of Composite Materials, 2018, 25(2): 309–336. DOI: 10.1515/secm-2015-0395.
|
[5] |
谢雨珊, 陆建华, 徐松林, 等. Mo-ZrC梯度金属陶瓷的冲击响应行为 [J]. 爆炸与冲击, 2023, 43(3): 033101. DOI: 10.11883/bzycj-2022-0374.
XIE Y S, LU J H, XU S L, et al. On impact properties of Mo-ZrC gradient metal ceramics [J]. Explosion and Shock Waves, 2023, 43(3): 033101. DOI: 10.11883/bzycj-2022-0374.
|
[6] |
SALEH B, JIANG J H, FATHI R, et al. Study of the microstructure and mechanical characteristics of AZ91-SiCP composites fabricated by stir casting [J]. Archives of Civil and Mechanical Engineering, 2020, 20(3): 71. DOI: 10.1007/s43452-020-00071-9.
|
[7] |
CHI S H, CHUNG Y L. Mechanical behavior of functionally graded material plates under transverse load. part I: analysis [J]. International Journal of Solids and Structures, 2006, 43(13): 3657–3674. DOI: 10.1016/j.ijsolstr.2005.04.011.
|
[8] |
CHANDRASEKHARAIAH D S. Thermoelasticity with second sound: a review [J]. Applied Mechanics Reviews, 1986, 39(3): 355–376. DOI: 10.1115/1.3143705.
|
[9] |
BABAEI M H, CHEN Z T. Hyperbolic heat conduction in a functionally graded hollow sphere [J]. International Journal of Thermophysics, 2008, 29(4): 1457–1469. DOI: 10.1007/s10765-008-0502-1.
|
[10] |
JIANG F M. Non-Fourier heat conduction phenomena in porous material heated by microsecond laser pulse [J]. Microscale Thermophysical Engineering, 2003, 6(4): 331–346. DOI: 10.1080/10893950290098386.
|
[11] |
CHANDRASEKHARAIAH D S. Hyperbolic thermoelasticity: a review of recent literature [J]. Applied Mechanics Reviews, 1998, 51(12): 705–729. DOI: 10.1115/1.3098984.
|
[12] |
BUCĂ A M, OANE M, MAHMOOD M A, et al. Non-Fourier estimate of electron temperature in case of femtosecond laser pulses interaction with metals [J]. Metals, 2020, 10(5): 606. DOI: 10.3390/met10050606.
|
[13] |
CHEN G. Non-Fourier phonon heat conduction at the microscale and nanoscale [J]. Nature Reviews Physics, 2021, 3(8): 555–569. DOI: 10.1038/s42254-021-00334-1.
|
[14] |
SELLITTO A, CARLOMAGNO I, DI DOMENICO M. Nonlocal and nonlinear effects in hyperbolic heat transfer in a two-temperature model [J]. Zeitschrift für Angewandte Mathematik und Physik, 2021, 72(1): 7. DOI: 10.1007/s00033-020-01435-0.
|
[15] |
POURASGHAR A, CHEN Z. Heat waves interference regarding dual-phase-lag, hyperbolic and Fourier heat conduction in CNT reinforced composites under a thermal shock [J]. Waves in Random and Complex Media, 2022, 32(3): 1198–1214. DOI: 10.1080/17455030.2020.1813351.
|
[16] |
XU B B, GAO X W, CUI M. High precision simulation and analysis of non-Fourier heat transfer during laser processing [J]. International Journal of Heat and Mass Transfer, 2021, 178: 121574. DOI: 10.1016/j.ijheatmasstransfer.2021.121574.
|
[17] |
PENG Y, ZHANG X Y, XIE Y J, et al. Transient hygrothermoelastic response in a cylinder considering non-Fourier hyperbolic heat-moisture coupling [J]. International Journal of Heat and Mass Transfer, 2018, 126: 1094–1103. DOI: 10.1016/j.ijheatmasstransfer.2018.05.084.
|
[18] |
JIANG F M. Solution and analysis of hyperbolic heat propagation in hollow spherical objects [J]. Heat and Mass Transfer, 2006, 42(12): 1083–1091. DOI: 10.1007/s00231-005-0066-6.
|
[19] |
KELES I, CONKER C. Transient hyperbolic heat conduction in thick-walled FGM cylinders and spheres with exponentially-varying properties [J]. European Journal of Mechanics A/Solids, 2011, 30(3): 449–455. DOI: 10.1016/j.euromechsol.2010.12.018.
|
[20] |
KATOH Y, VASUDEVAMURTHY G, NOZAWA T, et al. Properties of zirconium carbide for nuclear fuel applications [J]. Journal of Nuclear Materials, 2013, 441(1/2/3): 718–742. DOI: 10.1016/j.jnucmat.2013.05.037.
|
[21] |
CHENG J Y, NEMAT-NASSER S, GUO W G. A unified constitutive model for strain-rate and temperature dependent behavior of molybdenum [J]. Mechanics of Materials, 2001, 33(11): 603–616. DOI: 10.1016/S0167-6636(01)00076-X.
|
[22] |
ELISHAKOFF I, PELLEGRINI F. Exact solutions for buckling of some divergence-type nonconservative systems in terms of Bessel and lommel functions [J]. Computer Methods in Applied Mechanics and Engineering, 1988, 66(1): 107–119. DOI: 10.1016/0045-7825(88)90062-X.
|
[23] |
URBANOWICZ K, BERGANT A, GRZEJDA R, et al. About inverse Laplace transform of a dynamic viscosity function [J]. Materials, 2022, 15(12): 4364. DOI: 10.3390/ma15124364.
|