Citation: | GAO Shiqing, ZOU Liyong, TANG Jiupeng, LI Ji, LIN Jianyu. Numerical simulation of single-mode Richtmyer-Meshkov instability caused by high-Mach number shock wave[J]. Explosion And Shock Waves, 2024, 44(7): 073201. doi: 10.11883/bzycj-2023-0458 |
[1] |
RICHTMYER R D. Taylor instability in shock acceleration of compressible fluids [J]. Communications on Pure and Applied Mathematics, 1960, 13(2): 297–319. DOI: 10.1002/cpa.3160130207.
|
[2] |
MESHKOV E E. Instability of the interface of two gases accelerated by a shock wave [J]. Fluid Dynamics, 1969, 4(5): 101–104. DOI: 10.1007/BF01015969.
|
[3] |
ZHU Y J, YANG Z W, LUO K H, et al. Numerical investigation of planar shock wave impinging on spherical gas bubble with different densities [J]. Physics of Fluids, 2019, 31(5). DOI: 10.1063/1.5092317.
|
[4] |
IGRA D, IGRA O. Shock wave interaction with a polygonal bubble containing two different gases, a numerical investigation [J]. Journal of Fluid Mechanics, 2020, 889: A26. DOI: 10.1017/jfm.2020.72.
|
[5] |
SINGH S, BATTIATO M. Behavior of a shock-accelerated heavy cylindrical bubble under nonequilibrium conditions of diatomic and polyatomic gases [J]. Physical Review Fluids, 2021, 6(4): 044001. DOI: 10.1103/PhysRevFluids.6.044001.
|
[6] |
GEORGIEVSKIY P Y, LEVIN V A, SUTYRIN O G. Interaction of a shock with elliptical gas bubbles [J]. Shock Waves, 2015, 25(4): 357–369. DOI: 10.1007/s00193-015-0557-4.
|
[7] |
KITAMURA K, YUE Z, FUJIMOTO T, et al. Numerical and experimental study on the behavior of vortex rings generated by shock-bubble interaction [J]. Physics of Fluids, 2022, 34(4): 046105. DOI: 10.1063/5.0083596.
|
[8] |
RANJAN D, OAKLEY J, BONAZZA R. Shock-bubble interactions [J]. Annual Review of Fluid Mechanics, 2011, 43: 117–140. DOI: 10.1146/annurev-fluid-122109-160744.
|
[9] |
郑纯, 何勇, 张焕好, 等. 激波诱导环形SF6气柱演化的机理 [J]. 爆炸与冲击, 2023, 43(1): 013201. DOI: 10.11883/bzycj-2022-0226.
ZHENG C, HE Y, ZHANG H H, et al. On the evolution mechanism of the shock-accelerated annular SF6 cylinder [J]. Explosion and Shock Waves, 2023, 43(1): 013201. DOI: 10.11883/bzycj-2022-0226.
|
[10] |
GUO X, DING J C, LUO X S, et al. Evolution of a shocked multimode interface with sharp corners [J]. Physical Review Fluids, 2018, 3(11): 114004. DOI: 10.1103/PhysRevFluids.3.114004.
|
[11] |
ZABUSKY N J. Vortex paradigm for accelerated inhomogeneous flows: visiometrics for the Rayleigh-Taylor and Richtmyer-Meshkov environments [J]. Annual Review of Fluid Mechanics, 1999, 31: 495–536. DOI: 10.1146/annurev.fluid.31.1.495.
|
[12] |
LINDL J D, MCCRORY R L, CAMPBELL E M. Progress toward ignition and burn propagation in inertial confinement fusion [J]. Physics Today, 1992, 45(9): 32–40. DOI: 10.1063/1.881318.
|
[13] |
LINDL J, LANDEN O, EDWARDS J, et al. Review of the national ignition campaign 2009–2012 [J]. Physics of Plasmas, 2014, 21(2): 020501. DOI: 10.1063/1.4865400.
|
[14] |
薛大文, 陈志华, 韩珺礼. 球形重质气体物理爆炸特性 [J]. 爆炸与冲击, 2014, 34(6): 759–763. DOI: 10.11883/1001-1455(2014)06-0759-05.
XUE D W, CHEN Z H, HAN J L. Physical characteristics of circular heavy gas cloud explosion [J]. Explosion and Shock Waves, 2014, 34(6): 759–763. DOI: 10.11883/1001-1455(2014)06-0759-05.
|
[15] |
RAYLEIGH L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density [J]. Proceedings of the London Mathematical Society, 1882, s1-14(1): 170–177. DOI: 10.1112/plms/s1-14.1.170.
|
[16] |
TAYLOR G I. The air wave surrounding an expanding sphere [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1946, 186(1006): 273–292. DOI: 10.1098/rspa.1946.0044.
|
[17] |
MEYER K A, BLEWETT P J. Numerical investigation of the stability of a shock-accelerated interface between two fluids [J]. Physics of Fluids, 1972, 15(5): 753–759. DOI: 10.1063/1.1693980.
|
[18] |
VANDENBOOMGAERDE M, MÜGLER C, GAUTHIER S. Impulsive model for the Richtmyer-Meshkov instability [J]. Physical Review E, 1998, 58(2): 1874–1882. DOI: 10.1103/PhysRevE.58.1874.
|
[19] |
ZHANG Q, SOHN S I. Nonlinear theory of unstable fluid mixing driven by shock wave [J]. Physics of Fluids, 1997, 9(4): 1106–1124. DOI: 10.1063/1.869202.
|
[20] |
SADOT O, EREZ L, ALON U, et al. Study of nonlinear evolution of single-mode and two-bubble interaction under Richtmyer-Meshkov instability [J]. Physical Review Letters, 1998, 80(8): 1654–1657. DOI: 10.1103/PhysRevLett.80.1654.
|
[21] |
DIMONTE G, RAMAPRABHU P. Simulations and model of the nonlinear Richtmyer-Meshkov instability [J]. Physics of Fluids, 2010, 22(1): 014104. DOI: 10.1063/1.3276269.
|
[22] |
ZHANG Q, GUO W X. Universality of finger growth in two-dimensional Rayleigh-Taylor and Richtmyer-Meshkov instabilities with all density ratios [J]. Journal of Fluid Mechanics, 2016, 786: 47–61. DOI: 10.1017/jfm.2015.641.
|
[23] |
欧阳良琛, 马东军, 孙德军, 等. 单模大扰动的Richtmyer-Meshkov不稳定性 [J]. 爆炸与冲击, 2008, 28(5): 407–414. DOI: 10.11883/1001-1455(2008)05-0407-08.
OUYANG L C, MA D J, SUN D J, et al. High-amplitude single-mode perturbation evolution of Richtmyer-Meshkov instability [J]. Explosion and Shock Waves, 2008, 28(5): 407–414. DOI: 10.11883/1001-1455(2008)05-0407-08.
|
[24] |
杨玟, 王丽丽, 周海兵, 等. 用浮阻力模型研究Richtmyer-Meshkov不稳定性诱导混合 [J]. 爆炸与冲击, 2015, 35(3): 423–427. DOI: 10.11883/1001-1455(2015)03-0423-05.
YANG M, WANG L L, ZHOU H B, et al. Study on mixing induced by Richtmyer-Meshkov instability by using buoyancy-drag model [J]. Explosion and Shock Waves, 2015, 35(3): 423–427. DOI: 10.11883/1001-1455(2015)03-0423-05.
|
[25] |
BROUILLETTE M, BONAZZA R. Experiments on the Richtmyer-Meshkov instability: wall effects and wave phenomena [J]. Physics of Fluids, 1999, 11(5): 1127–1142. DOI: 10.1063/1.869983.
|
[26] |
VETTER M, STURTEVANT B. Experiments on the Richtmyer-Meshkov instability of an air/SF6 interface [J]. Shock Waves, 1995, 4(5): 247–252. DOI: 10.1007/BF01416035.
|
[27] |
JONES M A, JACOBS J W. A membraneless experiment for the study of Richtmyer-Meshkov instability of a shock-accelerated gas interface [J]. Physics of Fluids, 1997, 9(10): 3078–3085. DOI: 10.1063/1.869416.
|
[28] |
MANSOOR M M, DALTON S M, MARTINEZ A A, et al. The effect of initial conditions on mixing transition of the Richtmyer-Meshkov instability [J]. Journal of Fluid Mechanics, 2020, 904: A3. DOI: 10.1017/jfm.2020.620.
|
[29] |
罗喜胜, 王显圣, 陈模军, 等. 可控肥皂膜气柱界面与激波相互作用的实验研究 [J]. 实验流体力学, 2014, 28(2): 7–13,26. DOI: 10.11729/syltlx20140015.
LUO X S, WANG X S, CHEN M J, et al. Experimental study of shock interacting with well-controlled gas cylinder generated by soap film [J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2): 7–13,26. DOI: 10.11729/syltlx20140015.
|
[30] |
ZHAI Z G, SI T, LUO X S, et al. On the evolution of spherical gas interfaces accelerated by a planar shock wave [J]. Physics of Fluids, 2011, 23(8). DOI: 10.1063/1.3623272.
|
[31] |
ZHAI Z G, WANG M H, SI T, et al. On the interaction of a planar shock with a light polygonal interface [J]. Journal of Fluid Mechanics, 2014, 757: 800–816. DOI: 10.1017/jfm.2014.516.
|
[32] |
LI J, ZHU Y J, LUO X S. On Type VI-V transition in hypersonic double-wedge flows with thermo-chemical non-equilibrium effects [J]. Physics of Fluids, 2014, 26(8): 086104. DOI: 10.1063/1.4892819.
|
[33] |
王宏辉, 丁举春, 司廷, 等. 反射激波冲击单模界面的不稳定性实验研究 [J]. 空气动力学学报, 2022, 40(1): 33–40. DOI: 10.7638/kqdlxxb-2021.0153.
WANG H H, DING J C, SI T, et al. Richtmyer-Meshkov instability of a single-mode interface with reshock [J]. Acta Aerodynamica Sinica, 2022, 40(1): 33–40. DOI: 10.7638/kqdlxxb-2021.0153.
|
[34] |
LIU L L, LIANG Y, DING J C, et al. An elaborate experiment on the single-mode Richtmyer-Meshkov instability [J]. Journal of Fluid Mechanics, 2018, 853: R2. DOI: 10.1017/jfm.2018.628.
|
[35] |
马迪, 丁举春, 罗喜胜. 重/轻单模界面的Richtmyer-Meshkov不稳定性研究 [J]. 中国科学: 物理学 力学 天文学, 2020, 50(10): 104705. DOI: 10.1360/SSPMA-2020-0034.
MA D, DING J C, LUO X S. Study on Richtmyer-Meshkov instability at heavy/light single-mode interface [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(10): 104705. DOI: 10.1360/SSPMA-2020-0034.
|
[36] |
刘金宏, 邹立勇, 柏劲松, 等. 激波冲击下air/SF6界面的Richtmyer-Meshkov不稳定性 [J]. 爆炸与冲击, 2011, 31(2): 135–140. DOI: 10.11883/1001-1455(2011)02-0135-06.
LIU J H, ZOU L Y, BAI J S, et al. Richtmyer-Meshkov instability of shock-accelerated air/SF6 interfaces [J]. Explosion and Shock Waves, 2011, 31(2): 135–140. DOI: 10.11883/1001-1455(2011)02-0135-06.
|
[37] |
PRESTRIDGE K, RIGHTLEY P M, VOROBIEFF P, et al. Simultaneous density-field visualization and PIV of a shock-accelerated gas curtain [J]. Experiments in Fluids, 2000, 29(4): 339–346. DOI: 10.1007/s003489900091.
|
[38] |
廖深飞, 邹立勇, 刘金宏, 等. 反射激波作用重气柱的Richtmyer-Meshkov不稳定性的实验研究 [J]. 爆炸与冲击, 2016, 36(1): 87–92. DOI: 10.11883/1001-1455(2016)01-0087-06.
LIAO S F, ZOU L Y, LIU J H, et al. Experimental study of Richtmyer-Meshkov instability in a heavy gas cylinder interacting with reflected shock wave [J]. Explosion and Shock Waves, 2016, 36(1): 87–92. DOI: 10.11883/1001-1455(2016)01-0087-06.
|
[39] |
黄熙龙, 廖深飞, 邹立勇, 等. 激波与椭圆形重气柱相互作用的PLIF实验 [J]. 爆炸与冲击, 2017, 37(5): 829–836. DOI: 10.11883/1001-1455(2017)05-0829-08.
HUANG X L, LIAO S F, ZOU L Y, et al. Experiment on interaction of shock and elliptic heavy-gas cylinder by using PLIF [J]. Explosion and Shock Waves, 2017, 37(5): 829–836. DOI: 10.11883/1001-1455(2017)05-0829-08.
|
[40] |
NIEDERHAUS C E, JACOBS J W. Experimental study of the Richtmyer-Meshkov instability of incompressible fluids [J]. Journal of Fluid Mechanics, 2003, 485: 243–277. DOI: 10.1017/s002211200300452x.
|
[41] |
COLLINS B D, JACOBS J W. PLIF flow visualization and measurements of the Richtmyer-Meshkov instability of an air/SF6 interface [J]. Journal of Fluid Mechanics, 2002, 464: 113–136. DOI: 10.1017/s0022112002008844.
|
[42] |
WALCHLI B, THORNBER B. Reynolds number effects on the single-mode Richtmyer-Meshkov instability [J]. Physical Review E, 2017, 95(1): 013104. DOI: 10.1103/PhysRevE.95.013104.
|
[43] |
BAI X, DENG X L, JIANG L. A comparative study of the single-mode Richtmyer-Meshkov instability [J]. Shock Waves, 2018, 28(4): 795–813. DOI: 10.1007/s00193-017-0764-2.
|
[44] |
WONG M L, LIVESCU D, LELE S K. High-resolution Navier-Stokes simulations of Richtmyer-Meshkov instability with reshock [J]. Physical Review Fluids, 2019, 4(10): 104609. DOI: 10.1103/PhysRevFluids.4.104609.
|
[45] |
柏劲松, 李平, 王涛, 等. 可压缩多介质粘性流体的数值计算 [J]. 爆炸与冲击, 2007, 27(6): 515–521. DOI: 10.11883/1001-1455(2007)06-0515-07.
BAI J S, LI P, WANG T, et al. Computation of compressible multi-viscosity-fluid flows [J]. Explosion and Shock Waves, 2007, 27(6): 515–521. DOI: 10.11883/1001-1455(2007)06-0515-07.
|
[46] |
张君鹏, 翟志刚. 不同强度平面激波冲击下正方形air/SF6界面演化的数值研究 [J]. 中国科学: 物理学 力学 天文学, 2016, 46(6): 064701. DOI: 10.1360/SSPMA2015-00561.
ZHANG J P, ZHAI Z G. Numerical investigation on air/SF6 square block accelerated by planar shock with different strengths [J]. Scientia Sinica: Physica, Mechanica and Astronomica, 2016, 46(6): 064701. DOI: 10.1360/SSPMA2015-00561.
|
[47] |
SOHN S I. Effects of surface tension and viscosity on the growth rates of Rayleigh-Taylor and Richtmyer-Meshkov instabilities [J]. Physical Review E, 2009, 80(5): 055302. DOI: 10.1103/PhysRevE.80.055302.
|
[48] |
GROOM M, THORNBER B. Reynolds number dependence of turbulence induced by the Richtmyer-Meshkov instability using direct numerical simulations [J]. Journal of Fluid Mechanics, 2021, 908: A31. DOI: 10.1017/jfm.2020.913.
|
[49] |
张忠珍, 王继海. k-D-a-B模型和Richtmyer-Meshkov不稳定性的数值模拟 [J]. 爆炸与冲击, 1997, 17(3): 199–206.
ZHANG Z Z, WANG J H. Turbulent mixing model and numerical simulation of Richtmyer-Meshkov instability [J]. Explosion and Shock Waves, 1997, 17(3): 199–206.
|
[50] |
ATTAL N, RAMAPRABHU P. Numerical investigation of a single-mode chemically reacting Richtmyer-Meshkov instability [J]. Shock Waves, 2015, 25(4): 307–328. DOI: 10.1007/s00193-015-0571-6.
|
[51] |
陈霄, 董刚, 蒋华, 等. 多次激波诱导正弦扰动预混火焰界面失稳的数值研究 [J]. 爆炸与冲击, 2017, 37(2): 229–236. DOI: 10.11883/1001-1455(2017)02-0229-08.
CHEN X, DONG G, JIANG H, et al. Numerical studies of sinusoidally premixed flame interface instability induced by multiple shock waves [J]. Explosion and Shock Waves, 2017, 37(2): 229–236. DOI: 10.11883/1001-1455(2017)02-0229-08.
|
[52] |
WRIGHT C E, ABARZHI S I. Effect of adiabatic index on Richtmyer-Meshkov flows induced by strong shocks [J]. Physics of Fluids, 2021, 33(4): 046109. DOI: 10.1063/5.0041032.
|
[53] |
SAMULYAK R, PRYKARPATSKYY Y. Richtmyer-Meshkov instability in liquid metal flows: influence of cavitation and magnetic fields [J]. Mathematics and Computers in Simulation, 2004, 65(4/5): 431–446. DOI: 10.1016/j.matcom.2004.01.019.
|
[54] |
郝鹏程, 冯其京, 胡晓棉. 内爆加载金属界面不稳定性的数值分析 [J]. 爆炸与冲击, 2016, 36(6): 739–744. DOI: 10.11883/1001-1455(2016)06-0739-06.
HAO P C, FENG Q J, HU X M. A numerical study of the instability of the metal shell in the implosion [J]. Explosion and Shock Waves, 2016, 36(6): 739–744. DOI: 10.11883/1001-1455(2016)06-0739-06.
|
[55] |
王涛, 汪兵, 林健宇, 等. 柱形汇聚几何中内爆驱动金属界面不稳定性 [J]. 爆炸与冲击, 2020, 40(5): 052201. DOI: 10.11883/bzycj-2019-0150.
WANG T, WANG B, LIN J Y, et al. Numerical investigations of the interface instabilities of metallic material under implosion in cylindrical convergent geometry [J]. Explosion and Shock Waves, 2020, 40(5): 052201. DOI: 10.11883/bzycj-2019-0150.
|
[56] |
SUN P Y, DING J C, HUANG S H, et al. Microscopic Richtmyer-Meshkov instability under strong shock [J]. Physics of Fluids, 2020, 32(2). DOI: 10.1063/1.5143327.
|
[57] |
DELL Z, STELLINGWERF R F, ABARZHI S I. Effect of initial perturbation amplitude on Richtmyer-Meshkov flows induced by strong shocks [J]. Physics of Plasmas, 2015, 22(9): 092711. DOI: 10.1063/1.4931051.
|
[58] |
RIKANATI A, ORON D, SADOT O, et al. High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer-Meshkov instability [J]. Physical Review E, 2003, 67(2): 026307. DOI: 10.1103/PhysRevE.67.026307.
|
[59] |
SAMTANEY R, MEIRON D I. Hypervelocity Richtmyer-Meshkov instability [J]. Physics of Fluids, 1997, 9(6): 1783–1803. DOI: 10.1063/1.869294.
|
[60] |
ZANOTTI O, DUMBSER M. High order numerical simulations of the Richtmyer-Meshkov instability in a relativistic fluid [J]. Physics of Fluids, 2015, 27(7): 074105. DOI: 10.1063/1.4926585.
|
[61] |
FURUMOTO G H, ZHONG X L, SKIBA J C. Numerical studies of real-gas effects on two-dimensional hypersonic shock-wave/boundary-layer interaction [J]. Physics of Fluids, 1997, 9(1): 191–210. DOI: 10.1063/1.869162.
|
[62] |
MILLIKAN R C, WHITE D R. Systematics of vibrational relaxation [J]. The Journal of Chemical Physics, 1963, 39(12): 3209–3213. DOI: 10.1063/1.1734182.
|
[63] |
PARK C. Assessment of two-temperature kinetic model for ionizing air [J]. Journal of Thermophysics and Heat Transfer, 1989, 3(3): 233–244. DOI: 10.2514/3.28771.
|
[64] |
PARK C. On convergence of computation of chemically reacting flows [C]//23rd Aerospace Sciences Meeting. Reno: AIAA, 1985: 247. DOI: 10.2514/6.1985-247.
|
[65] |
HARTEN A, LAX P D, LEER B V. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws [J]. SIAM Review, 1983, 25(1): 35–61. DOI: 10.1137/1025002.
|
[66] |
TORO E F. Riemann solvers and numerical methods for fluid dynamics: a practical introduction [M]. Berlin: Springer, 1997. DOI: 10.1007/978-3-662-03490-3.
|
[67] |
BRANDON D M JR. A new single-step implicit integration algorithm with A-stability and improved accuracy [J]. Simulation, 1974, 23(1): 17–29. DOI: 10.1177/003754977402300105.
|
[68] |
JOHNSEN E, COLONIUS T. Implementation of WENO schemes in compressible multicomponent flow problems [J]. Journal of Computational Physics, 2006, 219(2): 715–732. DOI: 10.1016/j.jcp.2006.04.018.
|
[69] |
HOLMES R L, GROVE J W, SHARP D H. Numerical investigation of Richtmyer-Meshkov instability using front tracking [J]. Journal of Fluid Mechanics, 1995, 301: 51–64. DOI: 10.1017/s002211209500379x.
|
[70] |
BROUILLETTE M. The Richtmyer-Meshkov instability [J]. Annual Review of Fluid Mechanics, 2002, 34: 445–468. DOI: 10.1146/annurev.fluid.34.090101.162238.
|
[71] |
COLELLA P, GLAZ H M. Efficient solution algorithms for the Riemann problem for real gases [J]. Journal of Computational Physics, 1985, 59(2): 264–289. DOI: 10.1016/0021-9991(85)90146-9.
|
[72] |
MIKAELIAN K O. Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers [J]. Physical Review E, 2003, 67(2): 026319. DOI: 10.1103/PhysRevE.67.026319.
|
[73] |
ORON D, ARAZI L, KARTOON D, et al. Dimensionality dependence of the Rayleigh-Taylor and Richtmyer-Meshkov instability late-time scaling laws [J]. Physics of Plasmas, 2001, 8(6): 2883–2889. DOI: 10.1063/1.1362529.
|
[74] |
GONCHAROV V N. Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers [J]. Physical Review Letters, 2002, 88(13): 134502. DOI: 10.1103/PhysRevLett.88.134502.
|
[75] |
ALON U, HECHT J, OFER D, et al. Power laws and similarity of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts at all density ratios [J]. Physical Review Letters, 1995, 74(4): 534–537. DOI: 10.1103/PhysRevLett.74.534.
|
[76] |
HAAS J F, STURTEVANT B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities [J]. Journal of Fluid Mechanics, 1987, 181: 41–76. DOI: 10.1017/s0022112087002003.
|
[77] |
JACOBS J W. The dynamics of shock accelerated light and heavy gas cylinders [J]. Physics of Fluids A: Fluid Dynamics, 1993, 5(9): 2239–2247. DOI: 10.1063/1.858562.
|
[78] |
王震, 王涛, 柏劲松, 等. 流场非均匀性对非平面激波诱导的Richtmyer-Meshkov不稳定性影响的数值研究 [J]. 爆炸与冲击, 2019, 39(4): 041407041407. DOI: 10.11883/bzycj-2018-0342.
WANG Z, WANG T, BAI J S, et al. Numerical study of non-uniformity effect on Richtmyer-Meshkov instability induced by non-planar shock wave [J]. Explosion and Shock Waves, 2019, 39(4): 041407. DOI: 10.11883/bzycj-2018-0342.
|
[79] |
NIEDERHAUS J H J, GREENOUGH J A, OAKLEY J G, et al. A computational parameter study for the three-dimensional shock-bubble interaction [J]. Journal of Fluid Mechanics, 2008, 594: 85–124. DOI: 10.1017/s0022112007008749.
|