Citation: | FANG Qin, GAO Chu, KONG Xiangzhen, YANG Ya. A new composite protective structure based on the controllability of blast load on the structure layer (Ⅱ): influence factors and design concept[J]. Explosion And Shock Waves, 2025, 45(1): 011101. doi: 10.11883/bzycj-2023-0463 |
[1] |
方秦, 高矗, 孔祥振, 等. 主体结构荷载可控的新型组合式防护结构(Ⅰ): 抗爆机制 [J]. 爆炸与冲击, 2024, 44(11): 111001. DOI: 10.11883/bzycj-2023-0459.
FANG Q, GAO C, KONG X Z, et al. A new composite protective structure based on the controllability of blast load on the structure layer (Ⅰ): blast resistance mechanism [J]. Explosion and Shock Waves, 2024, 44(11): 111001. DOI: 10.11883/bzycj-2023-0459.
|
[2] |
张博一, 王伟, 周威. 地下防护结构 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2021: 212–218.
|
[3] |
颜海春, 艾德武, 袁正如, 等. 空气隔层成层式结构抗常规武器设计荷载分析 [J]. 地下空间与工程学报, 2012, 8(4): 802–806, 856. DOI: 10.3969/j.issn.1673-0836.2012.04.025.
YAN H C, AI D W, YUAN Z R, et al. On the load analysis of resistance to conventional weapons under the circumstances of air buffer application [J]. Chinese Journal of Underground Space and Engineering, 2012, 8(4): 802–806, 856. DOI: 10.3969/j.issn.1673-0836.2012.04.025.
|
[4] |
颜海春, 方秦, 陈力. 遮弹层震塌碎块对成层式结构顶板的冲击破坏效应 [J]. 解放军理工大学学报(自然科学版), 2008, 9(1): 52–56. DOI: 10.3969/j.issn.1009-3443.2008.01.011.
YAN H C, FANG Q, CHEN L. Damage effect on top plate of layered structure under impact of falling mass from blast layer [J]. Journal of PLA University of Science and Technology, 2008, 9(1): 52–56. DOI: 10.3969/j.issn.1009-3443.2008.01.011.
|
[5] |
ZHANG J X, ZHOU R F, WANG M S, et al. Dynamic response of double-layer rectangular sandwich plates with metal foam cores subjected to blast loading [J]. International Journal of Impact Engineering, 2018, 122(10): 265–275. DOI: 10.1016/j.ijimpeng.2018.08.016.
|
[6] |
ZHANG J H, CHEN L, WU H, et al. Experimental and mesoscopic investigation of double-layer aluminum foam under impact loading [J]. Composite Structures, 2020, 241(6): 110859. DOI: 10.1016/j.compstruct.2019.04.031.
|
[7] |
ZHANG J H, ZHANG Y D, FAN J Y, et al. Mesoscopic investigation of layered graded metallic foams under dynamic compaction [J]. Advances in Structural Engineering, 2018, 21(14): 2081–2098. DOI: 10.1177/1369433218766941.
|
[8] |
GARDNER N, WANG E H, SHUKLA A. Performance of functionally graded sandwich composite beams under shock wave loading [J]. Composite Structures, 2012, 94(5): 1755–1770. DOI: 10.1016/j.compstruct.2011.12.006.
|
[9] |
WANG E H, GARDNER N, SHUKLA A. The blast resistance of sandwich composites with stepwise graded cores [J]. International Journal of Solids and Structures, 2009, 46(18/19): 3492–3502. DOI: 10.1016/j.ijsolstr.2009.06.004.
|
[10] |
GUPTA N. A functionally graded syntactic foam material for high energy absorption under compression [J]. Materials Letters, 2007, 61(4/5): 979–982. DOI: 10.1016/j.matlet.2006.06.033.
|
[11] |
ZENG H B, PATTOFATTO S. Impact behaviour of hollow sphere agglomerates with density gradient [J]. International Journal of Mechanical Sciences, 2010, 52(5): 680–688. DOI: 10.1016/j.ijmecsci.2009.11.012.
|
[12] |
郝逸飞, 梁恺康, 杨光照. 一种常温养护保温隔热材料的制备方法: CN114149219B [P]. 2022-04-26.
|
[13] |
NIAN W, SUBRAMANIAM K, ANDREOPOULOS Y. Experimental investigation on blast response of cellular concrete [J]. International Journal of Impact Engineering, 2016, 96: 105–115. DOI: 10.1016/j.ijimpeng.2016.05.021.
|
[14] |
杨亚, 孔祥振, 方秦, 等. 爆炸荷载下泡沫混凝土分配层最小厚度的计算方法 [J]. 爆炸与冲击, 2023, 43(11): 114201. DOI: 10.11883/bzycj-2023-0047.
YANG Y, KONG X Z, FANG Q, et al. A calculation method for the minimum thickness of a foam concrete distribution layer under blast load [J]. Explosion And Shock Waves, 2023, 43(11): 114201. DOI: 10.11883/bzycj-2023-0047.
|
[15] |
中华人民共和国住房和城乡建设部. 泡沫混凝土规范: JG/T266—2011 [S]. 北京: 中国标准出版社, 2011: 2–11.
|
[16] |
LAINE L, SANDVIK A. Derivation of mechanical properties for sand [C]//4th Asian-Pacific Conference on Shock and Impact Loads on Structures. Singapore, 2001: 1–8.
|
[1] | SHU Conghao, YANG Cheng, TONG Weihao, LI Jie, LIU Binghe. Deformation and collision monitoring of lithium-ion batteries based on ultrasonic guided wave signals[J]. Explosion And Shock Waves, 2025, 45(2): 021442. doi: 10.11883/bzycj-2024-0351 |
[2] | CUI Shitang, ZHAO Hongyu, DONG Fangdong, ZHANG Yongliang. Effect of phase transformation on wave speeds in TiNi alloy thin-walled tube[J]. Explosion And Shock Waves, 2024, 44(9): 091425. doi: 10.11883/bzycj-2023-0368 |
[3] | LI Manjiang, ZHAO Zhihao, DONG Xinlong, FU Yingqian, YU Xinlu, ZHOU Gangyi. Deformation and phase transformation of 20 steel cylinders driven by inner explosion[J]. Explosion And Shock Waves, 2023, 43(1): 013105. doi: 10.11883/bzycj-2022-0074 |
[4] | CUI Shitang. Propagation of combined wave with phase transformation in pseudo-elastic TiNi alloy thin-walled tubes[J]. Explosion And Shock Waves, 2021, 41(1): 013201. doi: 10.11883/bzycj-2020-0108 |
[5] | HU Jinwen, ZHANG Nailiang, YOU Xiaojian, CAI Ruhua, CHENG Ping. Application of equivalent analysis to analyzing anti-collision performance of aged ships[J]. Explosion And Shock Waves, 2019, 39(7): 074201. doi: 10.11883/bzycj-2018-0143 |
[6] | HU Jinwen, YOU Xiaojian, WEN Xinyi, PENG Xiaojun, LI Tianyao. Influnence of side water on anti-collision performance of a ship[J]. Explosion And Shock Waves, 2019, 39(2): 023303. doi: 10.11883/bzycj-2017-0319 |
[7] | SHI Tongya, LIU Dongsheng, CHEN Wei, XIE Puchu, WANG Xiaofeng, WANG Yonggang. Dynamic tensile behavior and spall fracture of GP1 stainless steel processed by selective laser melting[J]. Explosion And Shock Waves, 2019, 39(7): 073101. doi: 10.11883/bzycj-2019-0015 |
[8] | LI Chenghua, JIANG Zhaoxiu, WANG Beiqiao, ZHANG Zhen, WANG Yonggang. Nonlinear mechanical response of PZT95/5 ferroelectric ceramics under high strain rate loading[J]. Explosion And Shock Waves, 2018, 38(4): 707-715. doi: 10.11883/bzycj-2016-0329 |
[9] | Li Yinglei, Ye Xiangping, Wang Zhigang. Dynamic characteristics of the γ→α phase transition of cerium at room temperature[J]. Explosion And Shock Waves, 2017, 37(3): 459-463. doi: 10.11883/1001-1455(2017)03-0459-05 |
[10] | Zhang Fengguo, Zhou Hongqiang, Hu Xiaomian, Wang Pei, Shao Jianli, Feng Qijing. Influence of void coalescence on spall evolution of ductile polycrystalline metal under dynamic loading[J]. Explosion And Shock Waves, 2016, 36(5): 596-602. doi: 10.11883/1001-1455(2016)05-0596-07 |
[11] | SUN Xiao-hui, CHEN Zhi-hua, ZHANG Huan-hao. Numericalinvestigationsondetonationinitiationaccelerated bycollisionofdiffractedshockwaves[J]. Explosion And Shock Waves, 2011, 31(4): 407-412. doi: 10.11883/1001-1455(2011)04-0407-06 |
[12] | LAN Sheng-wei, ZENG Xin-wu. Effect of grain size on dynamic mechanical properties of pure aluminum[J]. Explosion And Shock Waves, 2008, 28(5): 462-466. doi: 10.11883/1001-1455(2008)05-0462-05 |
[13] | CHEN Yong-tao, LI Qing-zhong, HU Hai-bo. Phase transition and spalling behavior of metal with low transition stress under high pressure[J]. Explosion And Shock Waves, 2008, 28(6): 503-506. doi: 10.11883/1001-1455(2008)06-0503-04 |
[14] | WANG Yong-gang, HE Hong-liang. Effect of tensile strain rate on spall fracture in 20 steel[J]. Explosion And Shock Waves, 2007, 27(3): 193-197. doi: 10.11883/1001-1455(2007)03-0193-05 |
[15] | JIANG Song-qing, LIU Wen-tao. Numerical modeling of spall fracture behavior in U-Nb alloys[J]. Explosion And Shock Waves, 2007, 27(6): 481-486. doi: 10.11883/1001-1455(2007)06-0481-06 |
[16] | ZHANG Xin-hua, TANG Zhi-ping, XU Wei-wei, TANG Xiao-jun, ZHENG Hang. Experimental study on characteristics of shock-induced phase transition and spallation in FeMnNi alloy[J]. Explosion And Shock Waves, 2007, 27(2): 103-108. doi: 10.11883/1001-1455(2007)02-0103-06 |
[17] | XIE Shu-gang, FAN Chun-lei, CHEN Da-nian, WANG Huan-ran. Experimental and numerical studies on spall of OFHC[J]. Explosion And Shock Waves, 2006, 26(6): 532-536. doi: 10.11883/1001-1445(2006)06-0532-05 |
[18] | TANG Xiao-jun, HU Hai-bo, LI Qing-zhong, ZHANG Xing-hua, TANG Zhi-ping, HU Ba-yi, TANG Tie-gang. Experimental studies on shock-induced phase transition in HR2 and other Fe-based materials[J]. Explosion And Shock Waves, 2006, 26(2): 115-120. doi: 10.11883/1001-1455(2006)02-0115-06 |
[19] | LI Xue-mei, JIN Xiao-gang, LI Da-hong. The spall characteristics of cylindrical steel tube under inward explosion loading[J]. Explosion And Shock Waves, 2005, 25(2): 107-111. doi: 10.11883/1001-1455(2005)02-0107-05 |
[20] | WANG Yong-gang, HE Hong-liang, CHEN Den-ping, WANG Li-li, JING Fu-qian. Comparison of different spall models for simulating spallation in ductile metals[J]. Explosion And Shock Waves, 2005, 25(5): 467-471. doi: 10.11883/1001-1455(2005)05-0467-05 |
1. | 李鹏程,张先锋,王桂吉,刘闯,刘均伟,邓宇轩,盛强. 弹体正侵彻混凝土靶动态开坑作用过程. 爆炸与冲击. 2023(09): 43-59 . ![]() |