Citation: | WANG Zhanming, CHEN Longkui, HUANG Shenghong. SPH-HLLC coupled method for one-dimentional elastic-perfectly plastic model[J]. Explosion And Shock Waves, 2024, 44(8): 081431. doi: 10.11883/bzycj-2024-0004 |
[1] |
MONAGHAN J J. Smoothed particle hydrodynamics [J]. Annual Review of Astronomy and Astrophysics, 1992, 30: 543–574. DOI: 10.1146/annurev.aa.30.090192.002551.
|
[2] |
VILA J P. On particle weighted methods and smooth particle hydrodynamics [J]. Mathematical Models and Methods in Applied Sciences, 1999, 9(2): 161–209. DOI: 10.1142/S0218202599000117.
|
[3] |
PARSHIKOV A N, MEDIN S A. Smoothed particle hydrodynamics usinginterparticle contact algorithms [J]. Journal of Computational Physics, 2002, 180(1): 358–382. DOI: 10.1006/jcph.2002.7099.
|
[4] |
LIBERSKY L D, RANDLES P W. Shocks and discontinuities in particle methods [J]. AIP Conference Proceedings, 2006, 845(1): 1089–1092. DOI: 10.1063/1.2263512.
|
[5] |
MEHRA V, CHATURVEDI S. High velocity impact of metal sphere on thin metallic plates: a comparative smooth particle hydrodynamics study [J]. Journal of Computational Physics, 2006, 212(1): 318–337. DOI: 10.1016/j.jcp.2005.06.020.
|
[6] |
LIN X, BALLMANN J. A Riemann solver and a second-order Godunov method for elastic-plastic wave propagation in solids [J]. International Journal of Impact Engineering, 1993, 13(3): 463–478. DOI: 10.1016/0734-743X(93)90118-Q.
|
[7] |
姚成宝, 付梅艳, 韩峰, 等. 基于多介质Riemann问题的流体-固体耦合数值方法及其在爆炸与冲击问题中的应用 [J]. 兵工学报, 2021, 42(2): 340–355. DOI: 10.3969/j.issn.1000-1093.2021.02.012.
YAO C B, FU M Y, HAN F, et al. A numerical scheme for fluid-solid interactions based on multi-medium Riemann problem and its application in explosion andimpact problems [J]. Acta Armamentarii, 2021, 42(2): 340–355. DOI: 10.3969/j.issn.1000-1093.2021.02.012.
|
[8] |
CHENG J B. Harten-Lax-van Leer-contact (HLLC) approximation Riemann solver with elastic waves for one-dimensional elastic-plastic problems [J]. Applied Mathematics and Mechanics, 2016, 37(11): 1517–1538. DOI: 10.1007/s10483-016-2104-9.
|
[9] |
GAO S, LIU T G. 1D exact elastic-perfectly plastic solid Riemann solver and its multi-material application [J]. Advances in Applied Mathematics and Mechanics, 2017, 9(3): 621–650. DOI: 10.4208/aamm.2015.m1340.
|
[10] |
GAO S, LIU T G, YAO C B. A complete list of exact solutions for one-dimensional elastic-perfectly plastic solid Riemann problem without vacuum [J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 63: 205–227. DOI: 10.1016/j.cnsns.2018.02.030.
|
[11] |
LI X, ZHAI J Y, SHEN Z J. An HLLC-type approximate Riemann solver for two-dimensional elastic-perfectly plastic model [J]. Journal of Computational Physics, 2022, 448: 110675. DOI: 10.1016/j.jcp.2021.110675.
|
[12] |
LIU M B, LIU G R. Smoothed particle hydrodynamics (SPH): an overview and recent developments [J]. Archives of Computational Methods in Engineering, 2010, 17(1): 25–76. DOI: 10.1007/s11831-010-9040-7.
|
[13] |
HUI W H, KUDRIAKOV S. On wall overheating and other computational difficulties of shock-capturing methods [J]. Computational Fluid Dynamics Journal, 2001, 10(2): 192–209.
|
[14] |
TORO E F. Riemann solvers and numerical methods for fluid dynamics: a practical introduction [M]. New York: Springer, 1997.
|
[15] |
CHEN Q, LI L, QI J, et al. A cell-centeredLagrangian scheme with an elastic-perfectly plastic solid Riemann solver for wave propagations in solids [J]. Advances in Applied Mathematics and Mechanics, 2022, 14(3): 703–724. DOI: 10.4208/aamm.OA-2020-0344.
|
[16] |
WILKINS M L. Calculation of elastic-plastic flow: NSA-18-002406 [R]. Livermore: Lawrence Radiation Laboratory, 1963.
|
[17] |
LIU L, CHENG J B, LIU Z. A multi-material HLLC Riemann solver with both elastic and plastic waves for 1D elastic-plastic flows [J]. Computers & Fluids, 2019, 192: 104265. DOI: 10.1016/j.compfluid.2019.104265.
|
[18] |
HOWELL B P, BALL G J. A free-Lagrange augmented Godunov method for the simulation of elastic-plastic solids [J]. Journal of Computational Physics, 2002, 175(1): 128–167. DOI: 10.1006/jcph.2001.6931.
|
[19] |
MAIRE P H, ABGRALL R, BREIL J, et al. A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids [J]. Journal of Computational Physics, 2013, 235: 626–665. DOI: 10.1016/j.jcp.2012.10.017.
|
[20] |
QUINLAN N J, BASA M, LASTIWKA M. Truncation error in mesh-free particle methods [J]. International Journal for Numerical Methods in Engineering, 2006, 66(13): 2064–2085. DOI: 10.1002/nme.1617.
|
[21] |
ZHANG Z L, LIU M B. Smoothed particle hydrodynamics with kernel gradient correction for modeling high velocity impact in two- and three-dimensional spaces [J]. Engineering Analysis with Boundary Elements, 2017, 83: 141–157. DOI: 10.1016/j.enganabound.2017.07.015.
|
[1] | QIAN Bingwen, ZHOU Gang, CHEN Chunlin, MA Kun, LI Yishuo, GAO Pengfei, YIN Lixin. Measurement and analysis of stress waves in concrete target under hypervelocity impact[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0181 |
[2] | QIAN Bingwen, ZHOU Gang, LI Mingrui, CHEN Chunlin, GAO Pengfei, SHEN Zikai, MA Kun. Influences of material properties of a projectile on hypervelocity penetration depth[J]. Explosion And Shock Waves, 2024, 44(10): 103302. doi: 10.11883/bzycj-2022-0310 |
[3] | FENG XiaoWei, LI Juncheng, LU Yonggang, WANG Shouqian, LU Zhengcao, LIU Chuang, FU Dan. Characteristics of high-mass tungsten alloy kinetic projectile penetrating ultra-high strength steel targets at high velocity[J]. Explosion And Shock Waves, 2023, 43(9): 091410. doi: 10.11883/bzycj-2023-0016 |
[4] | JIA Xing, TANG Longhuang, WENG Jidong, MA Heli, TAO Tianjiong, LIU Shenggang, CHEN Long, ZHANG Linwen, WANG Xiang. Microwave velocity interferometry for the parameter diagnosis of the interior ballistic of a two-stage light gas gun or powder gun[J]. Explosion And Shock Waves, 2022, 42(3): 034101. doi: 10.11883/bzycj-2021-0303 |
[5] | WANG Kehui, ZHOU Gang, LI Ming, ZOU Huihui, WU Haijun, GENG Baogang, DUAN Jian, DAI Xianghui, SHEN Zikai, LI Pengjie, GU Renhong. Experimental research on the mechanism of a high-velocity projectile penetrating into a reinforced concrete target[J]. Explosion And Shock Waves, 2021, 41(11): 113302. doi: 10.11883/bzycj-2020-0463 |
[6] | LIU Junwei, ZHANG Xianfeng, LIU Chuang, CHEN Haihua, WANG Jipeng, XIONG Wei. Study on mass erosion model of projectile penetrating concrete at high speed considering variation of friction coefficient[J]. Explosion And Shock Waves, 2021, 41(8): 083301. doi: 10.11883/bzycj-2020-0250 |
[7] | GUO Hu, HE Liling, CHEN Xiaowei, CHEN Gang, LI Jicheng. Penetration mechanism of a high-speed projectile into a shelter made of spherical aggregates[J]. Explosion And Shock Waves, 2020, 40(10): 103301. doi: 10.11883/bzycj-2019-0428 |
[8] | QIAN Bingwen, ZHOU Gang, LI Jin, LI Yunliang, ZHANG Dezhi, ZHANG Xiangrong, ZHU Yurong, TAN Shushun, JING Jiyong, ZHANG Zidong. Penetration depth of hypervelocity tungsten alloy projectile penetrating concrete target[J]. Explosion And Shock Waves, 2019, 39(8): 083301. doi: 10.11883/bzycj-2019-0141 |
[9] | OUYANG Hao, CHEN Xiaowei. Analysis of mass abrasion of high-speed penetrator influenced by aggregate in concrete target[J]. Explosion And Shock Waves, 2019, 39(7): 073102. doi: 10.11883/bzycj-2018-0068 |
[10] | Chen Changhai, Hou Hailiang, Zhang Yuanhao, Dai Wenxi, Zhu Xi, Fang Zhiwei. Residual characteristics of moderately thick water-backed steel plates penetrated by high-velocity fragments[J]. Explosion And Shock Waves, 2017, 37(6): 959-965. doi: 10.11883/1001-1455(2017)06-0959-07 |
[11] | Duan Jian, Wang Kehui, Zhou Gang, Xue Binjie, Chu Zhe, Li Ming, Dai Xianghui, Geng Baogang. Critical ricochet performance of penetrator impacting concrete targets[J]. Explosion And Shock Waves, 2016, 36(6): 797-802. doi: 10.11883/1001-1455(2016)06-0797-06 |
[12] | Song Meili, Li Wenbin, Wang Xiaoming, Feng Jun, Liu Zhilin. Experiments and dimensional analysis ofhigh-speed projectile penetration efficiency[J]. Explosion And Shock Waves, 2016, 36(6): 752-758. doi: 10.11883/1001-1455(2016)06-0752-07 |
[13] | Shen Chao, Pi Ai-guo, Liu Liu, Liu Jian-cheng, Huang Feng-lei. Discarding the sabot of a high-velocity projectile by a laminated wood target[J]. Explosion And Shock Waves, 2015, 35(5): 711-716. doi: 10.11883/1001-1455(2015)05-0711-06 |
[14] | Lin Hua-ling, Ding Yu-qing, Tang Wen-hui. Factors influencing numerical simulation of concrete penetration[J]. Explosion And Shock Waves, 2013, 33(4): 425-429. doi: 10.11883/1001-1455(2013)04-0425-05 |
[15] | HE Li-ling, CHEN Xiao-wei, FAN Ying. Metallographicobservationofreduced-scaleadvancedEPW afterhigh-speedpenetration[J]. Explosion And Shock Waves, 2012, 32(5): 515-522. doi: 10.11883/1001-1455(2012)05-0515-08 |
[16] | WU Hao, FANGQin, GONG Zi-ming. Semi-theoreticalanalysesforpenetrationdepthofrigidprojectiles withdifferentnosegeometriesintoconcrete(rock)target[J]. Explosion And Shock Waves, 2012, 32(6): 573-580. doi: 10.11883/1001-1455(2012)06-0573-08 |
[17] | WANG Yi-nan, HUANG Feng-lei, DUAN Zhuo-ping. Bendingofprojectilewithsmallangleofattack duringhigh-speedpenetrationofconcretetargets[J]. Explosion And Shock Waves, 2010, 30(6): 598-606. doi: 10.11883/1001-1455(2010)06-0598-09 |
[18] | HE Xiang, XU Xiang-yun, SUN Gui-juan, SHEN Jun, YANG Jian-chao, JIN Dong-liang. Experimentalinvestigationonprojectileshigh-velocitypenetration intoconcretetarget[J]. Explosion And Shock Waves, 2010, 30(1): 1-6. doi: 10.11883/1001-1455(2010)01-0001-06 |
[19] | LIANG Bin, CHEN Xiao-wei, JI Yong-qiang, HUANG Han-jun, GAO Hai-ying, . Experimental study on deep penetration of reduced-scale advanced earth penetrating weapon[J]. Explosion And Shock Waves, 2008, 28(1): 1-9. doi: 10.11883/1001-1455(2008)01-0001-09 |
[20] | ZHANG De-hai, ZHU Fu-sheng, XING Ji-bo. Application of beam-particle model to the prolem of concrete penetration[J]. Explosion And Shock Waves, 2005, 25(1): 85-89. doi: 10.11883/1001-1455(2005)01-0085-05 |
1. | 李珩,马国锐,刘宇迪,张海明. 基于遥感影像的大当量爆炸建筑物毁伤评估模型. 爆炸与冲击. 2024(03): 80-89 . ![]() | |
2. | 秦帅,刘浩,陈力,张磊. 融合先验知识的混凝土侵彻深度试验数据异常点检测算法. 爆炸与冲击. 2024(03): 70-79 . ![]() | |
3. | 马天宝,龙俊文,刘玥. 基于BP神经网络的水中双爆源爆炸冲击波峰值压力预测模型研究. 北京理工大学学报. 2024(03): 260-269 . ![]() | |
4. | 韩小祥,李君,张欣,原林,刘洋,王博宇. 核爆炸光辐射能量分布的模拟仿真研究. 强激光与粒子束. 2024(07): 119-130 . ![]() |