Volume 44 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
ZHOU Ziqing, WANG Pengfei, XU Songlin. Wave propagation in lattices based on Tersoff potential[J]. Explosion And Shock Waves, 2024, 44(9): 091421. doi: 10.11883/bzycj-2024-0007
Citation: ZHOU Ziqing, WANG Pengfei, XU Songlin. Wave propagation in lattices based on Tersoff potential[J]. Explosion And Shock Waves, 2024, 44(9): 091421. doi: 10.11883/bzycj-2024-0007

Wave propagation in lattices based on Tersoff potential

doi: 10.11883/bzycj-2024-0007
  • Received Date: 2024-01-02
  • Rev Recd Date: 2024-03-13
  • Available Online: 2024-04-23
  • Publish Date: 2024-09-20
  • The propagation characteristics of waves are the basis for studying the dynamic behavior of materials, and the theoretical study of waves in continuous media at the macro scale has been well developed. With the widespread application of materials and structures at the micro- and nano- scales, the study of wave propagation characteristics at the lattice scale is receiving increasing attention. In this article, the Tersoff potential interaction between lattices is applied to study the wave propagation characteristics in single-crystal and polycrystalline systems. Firstly, in the case of micro-vibration, the propagation of lattice waves in a single-crystal system is studied based on three potential energy functions between lattices: linear interaction, Tersoff potential, and Tersoff potential with defects. The dispersion relationship in the lattice and the expression of lattice wave velocity are obtained. Secondly, taking carbon lattice and silicon lattice as examples, the finite difference method is applied to study the wave propagation process in the single-crystal system under three potential energies. The differences in lattice motion under compressive and tensile impacts are compared, and the influence of incident velocity on the peak displacement and peak force is discussed, which reveals the difference in wave propagation between single-crystal systems and continuous media. Finally, taking diamond and silicon carbide as examples, molecular dynamics simulations are used to study the wave propagation characteristics in polycrystalline systems, and the differences in atomic motion at different spatial positions are discussed. The results indicate that the lattice structure in polycrystalline systems is more complex, and the wave propagation characteristics in polycrystalline systems are different from those in single-crystal systems. The existence of defects has a significant impact on the propagation law of waves, which is more prominent in polycrystalline systems. This study has good reference significance for the study of material dynamics performance at the micro- and nano- scales.
  • loading
  • [1]
    徐松林, 刘永贵, 席道瑛. 岩石物理与动力学原理 [M]. 北京: 科学出版社, 2019: 1–21.

    XU S L, LIU Y G, XI D Y. Rock physics and dynamics principle [M]. Beijing: Science Press, 2019: 1–21.
    [2]
    王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005: 1–28.

    WANG L L. Foundation of stress waves [M] 2nd ed. Beijing: National Defense Industry Press, 2005: 1–28.
    [3]
    袁良柱, 陆建华, 苗春贺, 等. 基于分数阶模型的牡蛎壳动力学特性研究 [J]. 爆炸与冲击, 2023, 43(1): 011101. DOI: 10.11883/bzycj-2022-0318.

    YUAN L Z, LU J H, MIAO C H, et al. Dynamic properties of oyster shells based on a fractional-order model [J]. Explosion and Shock Waves, 2023, 43(1): 011101. DOI: 10.11883/bzycj-2022-0318.
    [4]
    袁良柱, 苗春贺, 单俊芳, 等. 冲击下混凝土试样应变率效应和惯性效应探讨 [J]. 爆炸与冲击, 2022, 42(1): 013101. DOI: 10.11883/bzycj-2021-0114.

    YUAN L Z, MIAO C H, SHAN J F, et al. On strain-rate and inertia effects of concrete samples under impact [J]. Explosion and Shock Waves, 2022, 42(1): 013101. DOI: 10.11883/bzycj-2021-0114.
    [5]
    CHEN M D, XU S L, YUAN L Z, et al. Influence of stress state on dynamic behaviors of concrete under true triaxial confinements [J]. International Journal of Mechanical Sciences, 2023, 253: 108399. DOI: 10.2139/ssrn.4332010.
    [6]
    JANG S, RABBANI M, OGRINC A L, et al. Tribochemistry of diamond-like carbon: interplay between hydrogen content in the film and oxidative gas in the environment [J]. ACS Applied Materials & Interfaces, 2023, 15(31): 37997–38007. DOI: 10.1021/acsami.3c05316.
    [7]
    HU L F, ZHAI X Y, LI J G, et al. Improving the mechanical properties and tribological behavior of sulfobetaine polyurethane based on hydrophobic chains to be applied as artificial meniscus [J]. ACS Applied Materials & Interfaces, 2023, 15(25): 29801–29812. DOI: 10.1021/acsami.3c02940.
    [8]
    WANG D Y, WANG P F, WU Y F, et al. Temperature and rate-dependent plastic deformation mechanism of carbon nanotube fiber: experiments and modeling [J]. Journal of the Mechanics and Physics of Solids, 2023, 173: 105241. DOI: 10.1016/j.jmps.2023.105241.
    [9]
    薛晓. 碳纳米管纤维的动静态力学性能研究 [D]. 合肥: 中国科学技术大学, 2020: 53–61. DOI: 10.27517/d.cnki.gzkju.2020.000565.

    XUE X. Investigation of dynamic and quasi-static mechanical properties of carbon nanotube fibers [D]. Hefei: University of Science and Technology of China, 2020: 53–61. DOI: 10.27517/d.cnki.gzkju.2020.000565.
    [10]
    MACHADO M, MOREIRA P, FLORES P, et al. Compliant contact force models in multibody dynamics: evolution of the Hertz contact theory [J]. Mechanism and Machine Theory, 2012, 53: 99–121. DOI: 10.1016/j.mechmachtheory.2012.02.010.
    [11]
    BORODICH F M. The Hertz-type and adhesive contact problems for depth-sensing indentation [J]. Advances in Applied Mechanics, 2014, 47: 225–366. DOI: 10.1016/b978-0-12-800130-1.00003-5.
    [12]
    YANG F, XIE W H, MENG S H. Impact and blast performance enhancement in bio-inspired helicoidal structures: a numerical study [J]. Journal of the Mechanics and Physics of Solids, 2020, 142: 104025. DOI: 10.1016/j.jmps.2020.104025.
    [13]
    PENG Q, LIU X M, WEI Y G. Elastic impact of sphere on large plate [J]. Journal of the Mechanics and Physics of Solids, 2021, 156: 104604. DOI: 10.1016/j.jmps.2021.104604.
    [14]
    TANG X, YANG J. Wave propagation in granular material: what is the role of particle shape? [J]. Journal of the Mechanics and Physics of Solids, 2021, 157: 104605. DOI: 10.1016/j.jmps.2021.104605.
    [15]
    ALBERDI R, ROBBINS J, WALSH T, et al. Exploring wave propagation in heterogeneous metastructures using the relaxed micromorphic model [J]. Journal of the Mechanics and Physics of Solids, 2021, 155: 104540. DOI: 10.1016/j.jmps.2021.104540.
    [16]
    WAYMEL R F, WANG E, AWASTHI A, et al. Propagation and dissipation of elasto-plastic stress waves in two dimensional ordered granular media [J]. Journal of the Mechanics and Physics of Solids, 2018, 120: 117–131. DOI: 10.1016/j.jmps.2017.11.007.
    [17]
    LI S F, WANG G. Introduction to micromechanics and nanomechanics [M]. Singapore: World Scientific Publishing Co. Pre. Ltd., 2008.
    [18]
    ZUNDEL L, MALONE K, CERDÁN L, et al. Lattice resonances for thermoplasmonics [J]. ACS Photonics, 2023, 10(1): 274–282. DOI: 10.1021/acsphotonics.2c01610.
    [19]
    CERDÁN L, ZUNDEL L, MANJAVACAS A. Chiral lattice resonances in 2.5-dimensional periodic arrays with achiral unit cells [J]. ACS Photonics, 2023, 10(6): 1925–1935. DOI: 10.1021/acsphotonics.3c00369.
    [20]
    HU Y G, LIEW K M, WANG Q, et al. Nonlocal shell model for elastic wave propagation in single-and double-walled carbon nanotubes [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(12): 3475–3485. DOI: 10.1016/j.jmps.2008.08.010.
    [21]
    AGARWAL G, VALISETTY R R, DONGARE A M. Shock wave compression behavior and dislocation density evolution in Al microstructures at the atomic scales and the mesoscales [J]. International Journal of Plasticity, 2020, 128: 102678. DOI: 10.1016/j.ijplas.2020.1026.
    [22]
    SAM A, ÁLVAREZ M B, VENEGAS R, et al. Multiscale acoustic properties of nanoporous materials: from microscopic dynamics to mechanics and wave propagation [J]. The Journal of Physical Chemistry C, 2023, 127(15): 7471–7483. DOI: 10.1021/acs.jpcc.3c00060.
    [23]
    薛定谔. 薛定谔讲演录 [M]. 2版. 范岱年, 胡新和, 译. 北京: 北京大学出版社, 2019: 7–8.

    SCHRÖDINGER E. Lectures of Schrödinger [M]. 2nd ed. Translated by FAN D N, HU X H. Beijing: Peking University Press, 2019: 7–8.
    [24]
    TOLOS L, CENTELLES M, RAMOS A. The equation of state for the nucleonic and hyperonic core of neutron stars [J]. Publications of the Astronomical Society of Australia, 2017, 34: e065. DOI: 10.1017/pasa.2017.60.
    [25]
    AARABI M, SARKA J, PANDEY A, et al. Quantum dynamical investigation of dihydrogen-hydride exchange in a transition-metal polyhydride complex [J]. The Journal of Physical Chemistry A, 2023, 127(31): 6385–6399. DOI: 10.1021/acs.jpca.3c01863.
    [26]
    HO W W, CHOI S. Exact emergent quantum state designs from quantum chaotic dynamics [J]. Physical Review Letters, 2022, 128(6): 060601. DOI: 10.1103/PhysRevLett.128.060601.
    [27]
    黄昆. 固体物理学 [M]. 北京: 人民教育出版社, 1966: 35–43.
    [28]
    王礼立, 胡时胜, 杨黎明, 等. 材料动力学 [M]. 合肥: 中国科学技术大学出版社, 2017: 33–158.
    [29]
    BRENNER D W. Tersoff-type potentials for carbon, hydrogen and oxygen [J]. MRS Online Proceedings Library (OPL), 1988, 141: 59. DOI: 10.1557/proc-141-59.
    [30]
    TERSOFF J. Modeling solid-state chemistry: interatomic potentials for multicomponent systems [J]. Physical Review B, 1989, 39(8): 5566. DOI: 10.1103/PhysRevB.39.5566.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views (168) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return