Citation: | YANG Hui, WANG Kehui, ZHOU Gang, LI Ming, WU Haijun, DAI Xianghui, DUAN Jian. Dynamic mechanical properties and anti-penetration performance of granite with different weathering degrees[J]. Explosion And Shock Waves, 2024, 44(10): 101403. doi: 10.11883/bzycj-2024-0017 |
[1] |
徐干成, 顾金才, 张向阳, 等. 地下洞库围岩外加固抗炸弹侵彻性能研究 [J]. 岩石力学与工程学报, 2012, 31(10): 2064–2070. DOI: 10.3969/j.issn.1000-6915.2012.10.011.
XU G C, GU J C, ZHANG X Y, et al. Penetration resistivity research on anchored cavern surface rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 2064–2070. DOI: 10.3969/j.issn.1000-6915.2012.10.011.
|
[2] |
高杰, 何翔, 李磊, 等. 金属-岩石复合材料抗侵彻性能研究 [J]. 防护工程, 2016, 38(5): 11–16.
GAO J, HE X, LI L, et al. Study on anti-penetration performance of metal-rock composite [J]. Protective Engineering, 2016, 38(5): 11–16.
|
[3] |
邓国强, 孙宇新, 胡金生. 高速侵彻硬目标时弹体极限试验研究 [J]. 防护工程, 2016, 38(6): 14–17.
DENG G Q, SUN Y X, HU J S. Experimental study on the ultimate performance of projectile under high velocity penetration to hard target [J]. Protective Engineering, 2016, 38(6): 14–17.
|
[4] |
季京晨. 花岗岩物理力学性质与宏微观力学特性研究[D]. 淮南: 安徽理工大学, 2019: 18–26. DOI: 10.26918/d.cnki.ghngc.2019.000075.
JI J C. Study on the physical and mechanical properties of the granite and the micro-mechanical properties of the macro [D]. Huainan: Anhui University of Science & Technology, 2019: 18–26. DOI: 10.26918/d.cnki.ghngc.2019.000075.
|
[5] |
钱七虎, 王明洋. 岩土中的冲击爆炸效应[M]. 北京: 国防工业出版社, 2010: 1–24.
QIAN Q H, WANG M Y. Impact and explosion effects in rock and soil [M]. Beijing: National Defense Industry Press, 2010: 1–24.
|
[6] |
张德志, 张向荣, 林俊德, 等. 高强钢弹对花岗岩正侵彻的实验研究 [J]. 岩石力学与工程学报, 2005, 24(9): 1612–1618. DOI: 10.3321/j.issn:1000-6915.2005.09.024.
ZHANG D Z, ZHANG X R, LIN J D, et al. Penetration experiments for normal impact into granite targets with high-strength steel projectile [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9): 1612–1618. DOI: 10.3321/j.issn:1000-6915.2005.09.024.
|
[7] |
孙其然, 孙宇新, 李芮宇, 等. 带模拟装药弹体高速冲击岩石靶时的断裂特性 [J]. 爆炸与冲击, 2019, 39(1): 013303. DOI: 10.11883/bzycj-2017-0313.
SUN Q R, SUN Y X, LI R Y, et al. Simulation of explosive simulant filled with high-velocity projectiles crushing onto rock [J]. Explosion and Shock Waves, 2019, 39(1): 013303. DOI: 10.11883/bzycj-2017-0313.
|
[8] |
张翼宇. 不同风化程度花岗岩破坏特征及损伤演化试验研究[D]. 郑州: 华北水利水电大学, 2022: 9–25. DOI: 10.27144/d.cnki.ghbsc.2022.000389.
ZHANG Y Y. Experimental study on failure properties and damage behavior of granite specimens with different weathering degrees [J]. Zhengzhou: North China University of Water Resources and Electric Power, 2022: 9–25. DOI: 10.27144/d.cnki.ghbsc.2022.000389.
|
[9] |
DA FONSECA A V, CARVALHO J, FERREIRA C, et al. Characterization of a profile of residual soil from granite combining geological, geophysical and mechanical testing techniques [J]. Geotechnical & Geological Engineering, 2006, 24(5): 1307–1348. DOI: 10.1007/s10706-005-2023-z.
|
[10] |
黄飞宇. 风化程度影响下花岗岩风化壳物理力学性质与微观特征研究[D]. 广州: 广州大学, 2021: 57–69. DOI: 10.27040/d.cnki.ggzdu.2021.000845.
HUANG F Y. Study on physical and mechanical properties and microscopic characteristics of granite weathering crust under the influence of weathering degree [D]. Guangzhou: Guangzhou University, 2021: 57–69. DOI: 10.27040/d.cnki.ggzdu.2021.000845.
|
[11] |
HAKALEHTO K O. Brittle fracture of rocks under impulse loads [J]. International Journal of Fracture Mechanics, 1970, 6(3): 249–256. DOI: 10.1007/BF00212655.
|
[12] |
BASU A, MISHRA D A, ROYCHOWDHURY K. Rock failure modes under uniaxial compression, Brazilian, and point load tests [J]. Bulletin of Engineering Geology and the Environment, 2013, 72(3/4): 457–475. DOI: 10.1007/s10064-013-0505-4.
|
[13] |
李传净. 花岗岩在冲击作用下的力学特性及破坏形态研究[D]. 西安: 西安科技大学, 2018: 13–37.
LI C J. Study on mechanical properties and failure morphology of granite under impact [D]. Xi’an: Xi’an University of Science and Technology, 2018: 13–37.
|
[14] |
宋耀. 不同加载率条件下花岗岩动态断裂及损伤机理试验研究[D]. 北京: 中国矿业大学(北京), 2019: 57–75. DOI: 10.27624/d.cnki.gzkbu.2019.000133.
SONG Y. Experimental study on dynamic fracture and damage mechanism of granite under different loading rates [D]. Beijing: China University of Mining and Technology (Beijing), 2019: 57–75. DOI: 10.27624/d.cnki.gzkbu.2019.000133.
|
[15] |
刘鹏飞, 范俊奇, 郭佳奇, 等. 三轴应力下花岗岩加载破坏的能量演化和损伤特征 [J]. 高压物理学报, 2021, 35(2): 024102. DOI: 10.11858/gywlxb.20200622.
LIU P F, FAN J Q, GUO J Q, et al. Damage and energy evolution characteristics of granite under triaxial stress [J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024102. DOI: 10.11858/gywlxb.20200622.
|
[16] |
李艳, 程禹翰, 翟越, 等. 高温后花岗岩微观结构演化特性与动态力学性能研究 [J]. 岩土力学, 2022, 43(12): 3316–3326. DOI: 10.16285/j.rsm.2022.0101.
LI Y, CHENG Y H, ZHAI Y, et al. Micro-structure characteristics and dynamic mechanical properties of granite after high temperature [J]. Rock and Soil Mechanics, 2022, 43(12): 3316–3326. DOI: 10.16285/j.rsm.2022.0101.
|
[17] |
赵宁, 董硕, 陈熙宇, 等. 弱风化花岗岩的动态力学特性试验研究 [J]. 三峡大学学报(自然科学版), 2022, 44(5): 62–70. DOI: 10.13393/j.cnki.issn.1672-948X.2022.05.011.
ZHAO N, DONG S, CHEN X Y, et al. Experimental investigation on the dynamic mechanical properties of weakly weathered granite [J]. Journal of China Three Gorges University (Natural Sciences), 2022, 44(5): 62–70. DOI: 10.13393/j.cnki.issn.1672-948X.2022.05.011.
|
[18] |
张文峰. 不同风化程度作用下岩石破坏特性试验研究 [J]. 安徽建筑, 2022, 29(10): 162–164. DOI: 10.16330/j.cnki.1007-7359.2022.10.068.
ZHANG W F. Experimental study on failure properties of granite with different weathering degrees [J]. Anhui Architecture, 2022, 29(10): 162–164. DOI: 10.16330/j.cnki.1007-7359.2022.10.068.
|
[19] |
王政, 楼建锋, 勇珩, 等. 岩石、混凝土和土抗侵彻能力数值计算与分析 [J]. 高压物理学报, 2010, 24(3): 175–180. DOI: 10.11858/gywlxb.2010.03.003.
WANG Z, LOU J F, YONG H, et al. Numerical computation and analysis on anti-penetration capability of rock, concrete and soil [J]. Chinese Journal of High Pressure Physics, 2010, 24(3): 175–180. DOI: 10.11858/gywlxb.2010.03.003.
|
[20] |
李干, 宋春明, 邱艳宇, 等. 超高速弹对花岗岩侵彻深度逆减现象的理论与实验研究 [J]. 岩石力学与工程学报, 2018, 37(1): 60–66. DOI: 10.13722/j.cnki.jrme.2017.0584.
LI G, SONG C M, QIU Y Y, et al. Theoretical and experimental studies on the phenomenon of reduction in penetration depth of hyper-velocity projectiles into granite [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 60–66. DOI: 10.13722/j.cnki.jrme.2017.0584.
|
[21] |
宋春明, 李干, 王明洋, 等. 不同速度段弹体侵彻岩石靶体的理论分析 [J]. 爆炸与冲击, 2018, 38(2): 250–257. DOI: 10.11883/bzycj-2017-0198.
SONG C M, LI G, WANG M Y, et al. Theoretical analysis of projectiles penetrating into rock targets at different velocities [J]. Explosion and Shock Waves, 2018, 38(2): 250–257. DOI: 10.11883/bzycj-2017-0198.
|
[22] |
李彦豪. 超高速撞击条件下重金属长杆弹对花岗岩靶的成坑规律研究[D]. 西安: 西安建筑科技大学, 2020: 19–32. DOI: 10.27393/d.cnki.gxazu.2020.000958.
LI Y H. Study on pit formation of granite targets by heavy metal long rod projections under hypervelocity impact [D]. Xi’an: Xi’an University of Architecture and Technology, 2020: 19–32. DOI: 10.27393/d.cnki.gxazu.2020.000958.
|
[23] |
聂铮玥, 丁育青, 宋江杰, 等. 花岗岩Kong-Fang流体弹塑性损伤材料模型参数研究 [J]. 爆炸与冲击, 2022, 42(9): 091409. DOI: 10.11883/bzycj-2021-0363.
NIE Z Y, DING Y Q, SONG J J, et al. A study of parameters of Kong-Fang fluid elastoplastic damage material model for Shandong granite [J]. Explosion and Shock Waves, 2022, 42(9): 091409. DOI: 10.11883/bzycj-2021-0363.
|
[24] |
ULUSAY R. The ISRM suggested methods for rock characterization, testing and monitoring: 2007–2014 [M]. Cham: Springer, 2015: 47–48. DOI: 10.1007/978-3-319-07713-0.
|
[25] |
FREW D J, FORRESTAL M J, CHEN W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar [J]. Experimental Mechanics, 2002, 42(1): 93–106. DOI: 10.1007/BF02411056.
|
[26] |
SHANG J L, SHEN L T, ZHAO J. Hugoniot equation of state of the Bukit Timah granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 705–713. DOI: 10.1016/S1365-1609(00)00002-2.
|
[27] |
聂铮玥, 彭永, 陈荣, 等. 侵彻条件下岩石类材料RHT模型参数敏感性分析 [J]. 振动与冲击, 2021, 40(14): 108–116. DOI: 10.13465/j.cnki.jvs.2021.14.015.
NIE Z Y, PENG Y, CHEN R, et al. Sensitivity analysis of RHT model parameters for rock materials under penetrating condition [J]. Journal of Vibration and Shock, 2021, 40(14): 108–116. DOI: 10.13465/j.cnki.jvs.2021.14.015.
|
[28] |
左魁, 张继春, 曾宪明, 等. BLU-109B模型弹在岩石介质中成坑效应试验研究 [J]. 岩石力学与工程学报, 2007, 26(S1): 2767–2771. DOI: 10.3321/j.issn:1000-6915.2007.z1.027.
ZUO K, ZHANG J C, ZENG X M, et al. Experimental study on formation of craters in rock with BLU-109B Earth penetrating model projectiles [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 2767–2771. DOI: 10.3321/j.issn:1000-6915.2007.z1.027.
|
[29] |
LI J, WANG M Y, CHENG Y H, et al. Analytical model of hypervelocity penetration into rock [J]. International Journal of Impact Engineering, 2018, 122: 384–394. DOI: 10.1016/j.ijimpeng.2018.08.008.
|
[30] |
刘士践. 动能弹垂直侵彻混凝土的实验研究及其数值模拟[D]. 成都: 西南交通大学, 2007: 10–17.
|
[31] |
高飞, 张国凯, 纪玉国, 等. 卵形弹体超高速侵彻砂浆靶的响应特性 [J]. 兵工学报, 2020, 41(10): 1979–1987. DOI: 10.3969/j.issm.1000-1093.2020.10.007.
GAO F, ZHANG G K, JI Y G, et al. Response characteristics of hypervelocity ogive-nose projectile penetrating into mortar target [J]. Acta Armamentarii, 2020, 41(10): 1979–1987. DOI: 10.3969/j.issm.1000-1093.2020.10.007.
|
[32] |
吕映庆, 陈南勋, 武海军, 等. 弹体高速侵彻超高性能混凝土靶机理 [J]. 兵工学报, 2022, 43(1): 37–47. DOI: 10.3969/j.issn.1000-1093.2022.01.005.
LYU Y Q, CHEN N X, WU H J, et al. Mechanism of high-velocity projectile penetrating into ultra-high performance concrete target [J]. Acta Armamentarii, 2022, 43(1): 37–47. DOI: 10.3969/j.issn.1000-1093.2022.01.005.
|
[33] |
张雪岩, 武海军, 李金柱, 等. 弹体高速侵彻两种强度混凝土靶的对比研究 [J]. 兵工学报, 2019, 40(2): 276–283. DOI: 10.3969/j.issn.1000-1093.2019.02.007.
ZHANG X Y, WU H J, LI J Z, et al. Comparative study of projectiles penetrating into two kinds of concrete targets at high velocity [J]. Acta Armamentarii, 2019, 40(2): 276–283. DOI: 10.3969/j.issn.1000-1093.2019.02.007.
|
[34] |
WU H J, WANG K H, YANG H, et al. Effects of gradient nanostructures on the tribological properties and projectile abrasion during high-speed penetration in AerMet100 steel [J]. Journal of Materials Research and Technology, 2023, 25: 5871–5887. DOI: 10.1016/j.jmrt.2023.06.277.
|