ZHU Wenyan, WANG Quan, ZHANG Jun, XU Xiaomeng, FANG Jingxian, LI Xuejiao. Influence of explosion venting conditions on the deflagration characteristics of gas-powder two-phase mixture system in pipe[J]. Explosion And Shock Waves, 2024, 44(7): 075402. doi: 10.11883/bzycj-2024-0024
Citation: ZHU Wenyan, WANG Quan, ZHANG Jun, XU Xiaomeng, FANG Jingxian, LI Xuejiao. Influence of explosion venting conditions on the deflagration characteristics of gas-powder two-phase mixture system in pipe[J]. Explosion And Shock Waves, 2024, 44(7): 075402. doi: 10.11883/bzycj-2024-0024

Influence of explosion venting conditions on the deflagration characteristics of gas-powder two-phase mixture system in pipe

doi: 10.11883/bzycj-2024-0024
  • Received Date: 2024-01-10
  • Rev Recd Date: 2024-03-25
  • Available Online: 2024-03-29
  • Publish Date: 2024-07-05
  • To investigate the variation law of the blasting characteristics of the gas-powder two-phase mixed system, blast experiments with different outlet static action pressures (pst) were carried out in a self-built stainless steel flame acceleration pipeline, and the variation law of pst on two-phase blasting pressure, flame propagation velocity, and blasting flame morphology was emphatically studied. pst is determined by the blasting hole blocking ratio (θ) and the number of blasting film layers (n). The increase of θ and n together increases pst. The increase of pst strengthens the constraint of gas powder and reaction products flowing out of the pipe, increases the viscosity effect of the fluid in the pipe, promotes the reaction of gas powder in the pipe, and reduces the degree of secondary explosion of unfired gas outside the pipe. For the pressure-time interval curve analysis, pst increases from 2.97 kPa to 14.64 kPa, and the pressure time interval curve shows a double peak structure with a keep platform. The first pressure peak increases from 5.48 kPa to 10.20 kPa, the keep time extends from 6 ms to 25 ms, and the second pressure peak decreases from 23.03 kPa to 9.71 kPa. When pst is 16.08 and 24.12 kPa, the pressure before the bursting film is superimposed and reflected many times, resulting in the time-history curve of bursting film pressure showing a special oscillating and rising three-peak structure. In the analysis of flame propagation velocity, the increase of pst decreases the average flame propagation velocity from 161.33 m/s to 67.99 m/s. When n=2, the increase of θ makes the flame structure change from cluster to jet. When θ=88.9%, the blasting flame shows a typical jet shape. The increase of θ and n makes the flame brightness gradually decrease, the length of the flame luminescence zone decreases, the time interval from breaking film to flame emergence and the flame duration increase.
  • [1]
    DUAN Y L, WANG S, YANG Y L, et al. Experimental study on methane explosion characteristics with different types of porous media [J]. Journal of Loss Prevention in the Process Industries, 2021, 69: 104370. DOI: 10.1016/j.jlp.2020.104370.
    [2]
    BAO Q, FANG Q, ZHANG Y D, et al. Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane-air mixtures [J]. Fuel, 2016, 175: 40–48. DOI: 10.1016/j.fuel.2016.01.084.
    [3]
    GAO W, YU J L, ZHANG X Y, et al. Characteristics of vented nano-polymethyl methacrylate dust explosions [J]. Powder Technology, 2015, 283: 406–414. DOI: 10.1016/j.powtec.2015.06.011.
    [4]
    GAO W, YU J L, LI J, et al. Experimental investigation on micro- and nano-PMMA dust explosion venting at elevated static activation overpressures [J]. Powder Technology, 2016, 301: 713–722. DOI: 10.1016/j.powtec.2016.07.012.
    [5]
    PROUST C. Turbulent flame propagation in large dust clouds [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 859–869. DOI: 10.1016/j.jlp.2017.05.011.
    [6]
    邢志祥, 杜贞, 张成燕, 等. 密闭储罐内填充非金属多孔材料后预混可燃气体火焰传播的数值模拟 [J]. 安全与环境学报, 2014, 14(6): 91–95. DOI: 10.13637/j.issn.1009-6094.2014.06.022.

    XING Z X, DU Z, ZHANG C Y, et al. Simulation for the propagation of the premixed combustible gas flame in a closed tank with non-metal porous materials [J]. Journal of Safety and Environment, 2014, 14(6): 91–95. DOI: 10.13637/j.issn.1009-6094.2014.06.022.
    [7]
    师喜林, 蒋军成, 王志荣, 等. 甲烷-空气预混气体泄爆过程的实验研究 [J]. 中国安全科学学报, 2007, 17(12): 107–110. DOI: 10.3969/j.issn.1003-3033.2007.12.019.

    SHI X L, JIANG J C, WANG Z R, et al. Experimental study on the venting process of methane-air mixture explosion [J]. China Safety Science Journal, 2007, 17(12): 107–110. DOI: 10.3969/j.issn.1003-3033.2007.12.019.
    [8]
    师喜林, 王志荣, 蒋军成. 球形容器内气体的泄爆过程 [J]. 爆炸与冲击, 2009, 29(4): 390–394. DOI: 10.3321/j.issn:1001-1455.2009.04.010.

    SHI X L, WANG Z R, JIANG J C. Explosion-vented processes for methane-air premixed gas in spherical vessels with venting pipes [J]. Explosion and Shock Waves, 2009, 29(4): 390–394. DOI: 10.3321/j.issn:1001-1455.2009.04.010.
    [9]
    王健, 余靖宇, 凡子尧, 等. 组合多孔介质与氮气幕协同抑制瓦斯爆炸实验研究 [J]. 爆炸与冲击, 2023, 43(10): 105402. DOI: 10.11883/bzycj-2022-0562.

    WANG J, YU J Y, FAN Z Y, et al. Experimental study on the synergistic suppression of gas explosion by combined porous media and nitrogen curtain [J]. Explosion and Shock Waves, 2023, 43(10): 105402. DOI: 10.11883/bzycj-2022-0562.
    [10]
    杜赛枫, 张凯, 陈昊, 等. 破膜压力对氢-空气预混气体燃爆特性的影响 [J]. 爆炸与冲击, 2023, 43(2): 025401. DOI: 10.11883/bzycj-2022-0174.

    DU S F, ZHANG K, CHEN H, et al. Effects of vent burst pressure on explosion characteristics of premixed hydrogen-air gases [J]. Explosion and Shock Waves, 2023, 43(2): 025401. DOI: 10.11883/bzycj-2022-0174.
    [11]
    陈昊, 郭进, 王金贵, 等. 破膜压力对氢气-甲烷-空气泄爆的影响 [J]. 爆炸与冲击, 2022, 42(11): 115401. DOI: 10.11883/bzycj-2021-0418.

    CHEN H, GUO J, WANG J G, et al. Effects of vent burst pressure on hydrogen-methane-air deflagration in a vented duct [J]. Explosion and Shock Waves, 2022, 42(11): 115401. DOI: 10.11883/bzycj-2021-0418.
    [12]
    郑凯, 任佳乐, 宋晨, 等. 泡沫铜对密闭管道内合成气爆炸特性影响的实验研究 [J]. 爆炸与冲击, 2024, 44(1): 012102. DOI: 10.11883/bzycj-2023-0036.

    ZHENG K, REN J L, SONG C, et al. Experimental study on influences of copper foam on explosive characteristics of syngas in a closed pipe [J]. Explosion and Shock Waves, 2024, 44(1): 012102. DOI: 10.11883/bzycj-2023-0036.
    [13]
    RUI S C, LI Q, GUO J, et al. Experimental and numerical study on the effect of low vent burst pressure on vented methane-air deflagrations [J]. Process Safety and Environmental Protection, 2021, 146: 35–42. DOI: 10.1016/j.psep.2020.08.028.
    [14]
    CICCARELLI G, JOHANSEN C T, PARRAVANI M. The role of shock-flame interactions on flame acceleration in an obstacle laden channel [J]. Combustion and Flame, 2010, 157(11): 2125–2136. DOI: 10.1016/j.combustflame.2010.05.003.
    [15]
    BLANCHARD R, ARNDT D, GRÄTZ R, et al. Explosions in closed pipes containing baffles and 90 degree bends [J]. Journal of Loss Prevention in the Process Industries, 2010, 23(2): 253–259. DOI: 10.1016/j.jlp.2009.09.004.
    [16]
    LIN B Q, GUO C, SUN Y M, et al. Effect of bifurcation on premixed methane-air explosion overpressure in pipes [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 464–470. DOI: 10.1016/j.jlp.2016.07.011.
    [17]
    CHEN Z H, FAN B C, JIANG X H, et al. Investigations of secondary explosions induced by venting [J]. Process Safety Progress, 2006, 25(3): 255–261. DOI: 10.1002/prs.10139.
    [18]
    JIANG X H, FAN B C, YE J F, at al. Experimental investigations on the external pressure during venting [J]. Journal of Loss Prevention in the Process Industries, 2005, 18(1): 21–26. DOI: 10.1016/j.jlp.2004.09.002.
    [19]
    汪泉. 有机玻璃方管内瓦斯爆燃火焰传播特性研究 [D]. 合肥: 中国科学技术大学, 2013.
    [20]
    常伟达, 汪泉, 李志敏, 等. 弱封闭管道向抑爆装置内泄爆对火焰传播特性的影响 [J]. 火工品, 2019(5): 52–56. DOI: 10.3969/j.issn.1003-1480.2019.05.014.

    CHANG W D, WANG Q, LI Z M, et al. The effect of the weak closed-pipe venting into explosion suppression device on the flame propagation characteristics [J]. Initiators & Pyrotechnics, 2019(5): 52–56. DOI: 10.3969/j.issn.1003-1480.2019.05.014.
    [21]
    徐进生, 刘洋, 陈先锋, 等. 甲烷与空气质量浓度当量比对火焰结构及传播特性的影响 [J]. 中国安全科学学报, 2014, 24(9): 64–69. DOI: 10.16265/j.cnki.issn1003-3033.2014.09.018.

    XU J S, LIU Y, CHEN X F, et al. Effect of CH4 to air mass concentration ratio on flame structure and propagation characteristic [J]. China Safety Science Journal, 2014, 24(9): 64–69. DOI: 10.16265/j.cnki.issn1003-3033.2014.09.018.
    [22]
    FAKANDU B M, ANDREWS G E, PHYLAKTOU H N. Vent burst pressure effects on vented gas explosion reduced pressure [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 429–438. DOI: 10.1016/j.jlp.2015.02.005.
    [23]
    National Fire Protection Association. Standard on explosion protection by deflagration venting: NFPA 68 [S]. Quincy, MA: Batterymarch Parck, 2007.
    [24]
    European Committee for Standardization. Dust explosion venting protective systems: EN 14491 [S]. Brussels: European Committee for Standardization, 2013.
    [25]
    张军. 无机盐粉对管内瓦斯爆燃火焰传播及泄放特性影响的研究 [D]. 淮南: 安徽理工大学, 2022.

    ZHAGN J. Study on the influence of inorganic salt powder on the flame propagation and venting characteristics of methane explosion [D]. Huainan: Anhui University of Science and Technology, 2022.
  • Relative Articles

    [1]ZHAO Jiangping, ZHANG Shuqi, ZHONG Xingrun, YU Kainan. Explosion characteristics of additive manufacturing aluminum and aluminum-silicon alloy powders[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0093
    [2]HU Lishuang, LIU Yang, YANG Yajun, ZHU He, LIANG Kaili, HU Shuangqi. Inhibition effect of water mist on RDX dust explosion[J]. Explosion And Shock Waves, 2024, 44(5): 055401. doi: 10.11883/bzycj-2023-0346
    [3]MAO Wenzhe, ZHANG Guotao, YANG Shuaishuai, XU Zihui, WANG Yan, JI Wentao. Characteristics of hydrogenated magnesium dust explosion flame propagating in a semi-enclosed space[J]. Explosion And Shock Waves, 2024, 44(6): 065401. doi: 10.11883/bzycj-2023-0363
    [4]LIU Jiajia, ZHANG Yang, ZHANG Xiang, NIE Zishuo. Simulation study on propagation characteristics of gas explosion in Y-shaped ventilated coal face[J]. Explosion And Shock Waves, 2023, 43(8): 085401. doi: 10.11883/bzycj-2023-0018
    [5]GUO Rui, LI Nan, ZHANG Xinyan, ZHANG Yansong, XU Chang, ZHANG Gongyan, ZHAO Xing, XIE Yuxuan, HAN Zhelin. Correlation between pressure characteristics and thermochemical kinetics during suppression of micro/nano PMMA dust explosion[J]. Explosion And Shock Waves, 2023, 43(12): 125401. doi: 10.11883/bzycj-2023-0058
    [6]KANG Penglin, LI Xiaodong, LIU Wenjie, SUN Yantao, GUAN Yunfei, MA Zhigang, ZHAO Ziwen. Influence of the ignition energy on combustion and explosion characteristics of single-base propellant[J]. Explosion And Shock Waves, 2023, 43(7): 072302. doi: 10.11883/bzycj-2022-0452
    [7]ZHANG Qiwei, CHENG Yangfan, XIA Yu, WANG Zhonghua, WANG Quan, SHEN Zhaowu. Application of colorimetric pyrometer in the measurement of transient explosion temperature[J]. Explosion And Shock Waves, 2022, 42(11): 114101. doi: 10.11883/bzycj-2021-0477
    [8]WU Linyuan, YU Lifu, WANG Tianshu, SUN Wei, XU Jianhang, LI Hang. Explosion characteristics of oil shale dust in a confined space[J]. Explosion And Shock Waves, 2022, 42(1): 015401. doi: 10.11883/bzycj-2021-0139
    [9]ZHOU Yonghao, GAN Bo, JIANG Haipeng, HUANG Lei, GAO Wei. Investigations on the flame propagation characteristics in methane and coal dust hybrid explosions[J]. Explosion And Shock Waves, 2022, 42(1): 015402. doi: 10.11883/bzycj-2021-0064
    [10]ZHANG Yansong, LI Nan, GUO Rui, ZHANG Xinyan, ZHANG Gongyan, HUANG Xingwang. Relationship between pyrolysis kinetics and flame propagation characteristics of lauric acid and stearic acid dust explosion[J]. Explosion And Shock Waves, 2022, 42(7): 075402. doi: 10.11883/bzycj-2021-0470
    [11]LIU Xueling, ZHANG Qi. Influence of pre-ignition turbulence intensity on n-pentane mists explosion[J]. Explosion And Shock Waves, 2019, 39(3): 032101. doi: 10.11883/bzycj-2017-0458
    [12]YU Jianliang, JI Wentao, YAN Xingqing, YU Xiaozhe, HOU Yujie. Flame propagation characteristics of lycopodium dust explosion under explosion pressure accumulation conditions[J]. Explosion And Shock Waves, 2019, 39(2): 025401. doi: 10.11883/bzycj-2017-0436
    [13]GAN Bo, GAO Wei, ZHANG Xinyan, JIANG Haipeng, BI Mingshu. Flame temperatures of PMMA dust clouds with different particle size distributions[J]. Explosion And Shock Waves, 2019, 39(1): 015401. doi: 10.11883/bzycj-2017-0244
    [14]ZHOU Ning, ZHANG Guowen, WANG Wenxiu, ZHAO Huijun, YUAN Xiongjun, HUANG Weiqiu. Effect of ignition energy on the explosion process and the dynamic response of propane-air premixed gas[J]. Explosion And Shock Waves, 2018, 38(5): 1031-1038. doi: 10.11883/bzycj-2017-0049
    [15]Chen Xi, Chen Xianfeng, Zhang Hongming, Liu Xuanya, Zhang Ying, Niu Yi, Hu Dongtao. Effects of inerting agent with different particle sizes onthe flame propagation of aluminum dust[J]. Explosion And Shock Waves, 2017, 37(4): 759-765. doi: 10.11883/1001-1455(2017)04-0759-07
    [16]Yu Jianliang, Ji Wentao, Sun Huili, Yan Xingqing, Zhang Xinyan. Experimental investigation of the lower explosion limit of hybrid mixtures of methane and lycopodium dust[J]. Explosion And Shock Waves, 2017, 37(6): 924-930. doi: 10.11883/1001-1455(2017)06-0924-07
    [17]Gao Wei, Abe Shuntaro, Rong Jian-zhong, Dobashi Ritsu. Effect of airflow characteristics on flame structure for following lycopodium dust-air mixtures in a long horizontal tube[J]. Explosion And Shock Waves, 2015, 35(3): 372-379. doi: 10.11883/1001-1455-(2015)03-0372-08
    [18]KUAI Nian-sheng, HUANG Wei-xing, YUAN Jing-jie, . Influenceofignitionenergyondustexplosionbehavior[J]. Explosion And Shock Waves, 2012, 32(4): 432-438. doi: 10.11883/1001-1455(2012)04-0432-07
    [19]GAO Cong, LI Hua, SU Dan, HUANG Wei-Xing. Explosion characteristics of coal dust in a sealed vessel[J]. Explosion And Shock Waves, 2010, 30(2): 164-168. doi: 10.11883/1001-1455(2010)02-0164-05
    [20]CHEN Zhi-hua, YE Jing-fang, FAN Bao-chun, JIANG Xiao-hai, GUI Ming-yue. Effects of a wedge obstacle on flame propagation and its structure[J]. Explosion And Shock Waves, 2006, 26(3): 208-213. doi: 10.11883/1001-1455(2006)03-0208-06
  • Cited by

    Periodical cited type(18)

    1. 虞爱平,李秀鑫,程梓宸,苗天娇,刘涛,虞小平. 基于声发射和数字图像相关技术的不同粗骨料粒径混凝土损伤特性. 河南科技大学学报(自然科学版). 2024(05): 57-67+78+118-119 .
    2. 范海峥. 高应力状态下大理岩受异源扰动声发射响应研究. 佳木斯大学学报(自然科学版). 2022(01): 16-19 .
    3. 文晓泽,冯国瑞,郭军,王朋飞,钱瑞鹏,朱林俊,郝晨良,樊一江. 中低应变率扰动荷载作用下砂岩动态拉伸力学响应特征研究. 岩石力学与工程学报. 2022(S1): 2812-2822 .
    4. 杨英明,陶春梅,郭奕宏,张科学. 动静组合加载下煤体损伤及力学特性研究. 采矿与安全工程学报. 2019(01): 198-206 .
    5. 张桂菊,谭青,劳同炳. 不同动静载荷组合作用下盘形滚刀破岩机制. 中南大学学报(自然科学版). 2019(03): 540-549 .
    6. 严鹏,陈拓,卢文波,谢良涛. 岩爆动力学机理及其控制研究进展. 武汉大学学报(工学版). 2018(01): 1-14+26 .
    7. 王宗炼,任会兰,宁建国. 基于小波变换的混凝土压缩损伤模式识别. 兵工学报. 2017(09): 1745-1753 .
    8. 李晓锋,李海波,刘凯,张乾兵,邹飞,黄理兴,ZHAO Jian. 冲击荷载作用下岩石动态力学特性及破裂特征研究. 岩石力学与工程学报. 2017(10): 2393-2405 .
    9. 刘希灵,潘梦成,李夕兵,王金鹏. 动静加载条件下花岗岩声发射b值特征的研究. 岩石力学与工程学报. 2017(S1): 3148-3155 .
    10. 罗小平,黄友亮. 不同岩性Kaiser效应实验研究. 中州煤炭. 2016(04): 122-124+128 .
    11. 章道生,顾培英,邓昌,王建. 砂浆板冲击荷载下声发射定位试验研究. 科学技术与工程. 2015(09): 56-62 .
    12. 张宇,赵光明,杨敏. 单轴压缩条件下煤矿岩石的声发射特征研究. 煤炭技术. 2014(05): 76-78 .
    13. 周子龙,李国楠,宁树理,杜坤. 侧向扰动下高应力岩石的声发射特性与破坏机制. 岩石力学与工程学报. 2014(08): 1720-1728 .
    14. 刘少虹,李凤明,蓝航,潘俊锋,杜涛涛. 动静加载下煤的破坏特性及机制的试验研究. 岩石力学与工程学报. 2013(S2): 3749-3759 .
    15. 廖志毅,梁正召,唐春安,杨岳峰. 动静组合作用下刀具破岩机制数值分析. 岩土力学. 2013(09): 2682-2689+2698 .
    16. 赵伏军,王宏宇,彭云,王国举. 动静组合载荷破岩声发射能量与破岩效果试验研究. 岩石力学与工程学报. 2012(07): 1363-1368 .
    17. 万国香,王其胜,李夕兵. 岩体中电磁辐射信号的产生与传播. 矿业研究与开发. 2011(01): 23-25+52 .
    18. 王小琼,葛洪魁,宋丽莉,和泰名,辛维. 两类岩石声发射事件与Kaiser效应点识别方法的试验研究. 岩石力学与工程学报. 2011(03): 580-588 .

    Other cited types(46)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (397) PDF downloads(70) Cited by(64)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return