Turn off MathJax
Article Contents
CHU Huaibao, CHEN Luyang, YANG Xiaolin, WANG Donghui, WEI Haixia, SUN Bo. Experimental study on impact failure law of water-saturated granite with initial damage[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0036
Citation: CHU Huaibao, CHEN Luyang, YANG Xiaolin, WANG Donghui, WEI Haixia, SUN Bo. Experimental study on impact failure law of water-saturated granite with initial damage[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0036

Experimental study on impact failure law of water-saturated granite with initial damage

doi: 10.11883/bzycj-2024-0036
  • Received Date: 2024-01-22
  • Rev Recd Date: 2024-03-25
  • Available Online: 2024-03-26
  • X-ray diffraction test was used to analyze the changes in the mineral composition of the granite before and after filling with water to study the effects of saturated water and initial damage degree on macroscopic and microscopic failure characteristics of granite under impact load. The Hopkinson device was used to carry out dynamic mechanical tests on the granite samples under different states to analyze the dynamic mechanical properties of the granite and the block size characteristics under different states. In addition, some of the granite fragments after impact were selected for electron microscope scanning test to analyze the fracture failure characteristics. The fractal dimension was used to analyze the fragmentation degree of the granite fragments after impact and the scanning images of the fracture under electron microscopy. The influence of the image magnification selected during electron microscope scanning on the fractal dimension is discussed. The micro-cracking mechanism of granite induced by saturated water under impact load is briefly analyzed. The results show that the mineral composition of the saturated granite changes compared with the natural granite. The proportions of hornblende, albite, microcline, and quartz in the saturated granite decrease, while the proportion of kaolinite increases significantly. With the increase of initial damage, the dynamic peak stress of granite gradually decreases while the fragmentation degree and the fractal dimension of the block increase gradually, and the influence of initial damage on the fractal dimension of the block is greater than that of saturated water. With the increase of initial damage, more micro-cracks and debris appear in the fracture image, and the fractal dimension of the fracture image increases gradually. In a certain range, the fractal dimension of electron microscope scanning images increases with the increase of image magnification, but when the image exceeds a certain multiple, the fractal dimension will decrease. The research results can provide some theoretical and engineering references for the failure and instability mechanism analysis of disturbed water-saturated granite with initial damage in geotechnical engineering.
  • loading
  • [1]
    李夕兵, 周健, 王少锋, 等. 深部固体资源开采评述与探索 [J]. 中国有色金属学报, 2017, 27(6): 1236–1262. DOI: 10.19476/j.ysxb.1004.0609.2017.06.021.

    LI X B, ZHOU J, WANG S F, et al. Review and practice of deep mining for solid mineral resources [J]. The Chinese Journal of Nonferrous Metals, 2017, 27(6): 1236–1262. DOI: 10.19476/j.ysxb.1004.0609.2017.06.021.
    [2]
    薛永明, 单启伟, 戴兵, 等. 不同损伤程度花岗岩在冲击荷载作用下的动态力学特性 [J]. 有色金属工程, 2020, 10(3): 54–61. DOI: 10.3969/j.issn.2095-1744.2020.03.010.

    XUE Y M, SHAN Q W, DAI B, et al. Dynamic mechanical properties of granite with different damage degrees under impact loading [J]. Nonferrous Metals Engineering, 2020, 10(3): 54–61. DOI: 10.3969/j.issn.2095-1744.2020.03.010.
    [3]
    李地元, 朱泉企, 李夕兵. 孔洞形状对大理岩渐进破坏力学特性影响研究 [J]. 地下空间与工程学报, 2018, 14(1): 58–66.

    LI D Y, ZHU Q Q, LI X B. Research on the effect of cavity shapes for the progressive failure and mechanical behavior of marble [J]. Chinese Journal of Underground Space and Engineering, 2018, 14(1): 58–66.
    [4]
    朱晶晶, 李夕兵, 宫凤强, 等. 单轴循环冲击下岩石的动力学特性及其损伤模型研究 [J]. 岩土工程学报, 2013, 35(3): 531–539.

    ZHU J J, LI X B, GONG F Q, et al. Dynamic characteristics and damage model for rock under uniaxial cyclic impact compressive loads [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 531–539.
    [5]
    王志亮, 杨辉, 田诺成. 单轴循环冲击下花岗岩力学特性与损伤演化机理 [J]. 哈尔滨工业大学学报, 2020, 52(2): 59–66. DOI: 10.11918/201811085.

    WANG Z L, YANG H, TIAN N C. Mechanical property and damage evolution mechanism of granite under uniaxial cyclic impact [J]. Journal of Harbin Institute of Technology, 2020, 52(2): 59–66. DOI: 10.11918/201811085.
    [6]
    柴耀光, 刘连生, 曾鹏, 等. 高应变率下含水红砂岩爆破损伤演化模型研究 [J]. 工程爆破, 2022, 28(5): 23–32. DOI: 10.19931/j.EB.20210192.

    CHAI Y G, LIU L S, ZENG P, et al. Research on blasting damage evolution model of water bearing red sandstone under high strain rate [J]. Engineering Blasting, 2022, 28(5): 23–32. DOI: 10.19931/j.EB.20210192.
    [7]
    王浩宇, 许金余, 刘石. 水-动力耦合作用下红砂岩动态强度及破坏机理 [J]. 空军工程大学学报(自然科学版), 2021, 22(4): 99–103. DOI: 10.3969/j.issn.1009-3516.2021.04.015.

    WANG H Y, XU J Y, LIU S. Study of dynamic strength and failure mechanism of red sandstone under condition of hydrodynamic coupling effect [J]. Journal of Air Force Engineering University (Natural Science Edition), 2021, 22(4): 99–103. DOI: 10.3969/j.issn.1009-3516.2021.04.015.
    [8]
    闻磊, 冯文杰, 李明烨, 等. 应变率对含裂隙红砂岩裂纹扩展模式及破碎特征的影响 [J]. 爆炸与冲击, 2023, 43(11): 113103. DOI: 10.11883/bzycj-2023-0061.

    WEN L, FENG W J, LI M Y, et al. Strain rate effect on crack propagation and fragmentation characteristics of red sandstone containing pre-cracks [J]. Explosion and Shock Waves, 2023, 43(11): 113103. DOI: 10.11883/bzycj-2023-0061.
    [9]
    周磊, 姜亚成, 朱哲明, 等. 动载荷作用下裂隙岩体的止裂机理分析 [J]. 爆炸与冲击, 2021, 41(5): 053102. DOI: 10.11883/bzycj-2020-0125.

    ZHOU L, JIANG Y C, ZHU Z M, et al. Mechanism study of preventing crack propagation of fractured rock under dynamic loads [J]. Explosion and Shock Waves, 2021, 41(5): 053102. DOI: 10.11883/bzycj-2020-0125.
    [10]
    王璐, 王志亮, 石高扬, 等. 热处理花岗岩循环冲击下断口形貌研究 [J]. 水利水运工程学报, 2018(5): 69–75. DOI: 10.16198/j.cnki.1009-640x.2018.05.010.

    WANG L, WANG Z L, SHI G Y, et al. Fractography study of heat-treated granite under action of cyclic impact loading [J]. Hydro-Science and Engineering, 2018(5): 69–75. DOI: 10.16198/j.cnki.1009-640x.2018.05.010.
    [11]
    武仁杰, 李海波. SHPB冲击作用下层状千枚岩多尺度破坏机理研究 [J]. 爆炸与冲击, 2019, 39(8): 083106. DOI: 10.11883/bzycj-2019-0187.

    WU R J, LI H B. Multi-scale failure mechanism analysis of layered phyllite subject to impact loading [J]. Explosion and Shock Waves, 2019, 39(8): 083106. DOI: 10.11883/bzycj-2019-0187.
    [12]
    陶明, 汪军, 李占文, 等. 冲击荷载下花岗岩层裂断口细–微观试验研究 [J]. 岩石力学与工程学报, 2019, 38(11): 2172–2181. DOI: 10.13722/j.cnki.jrme.2019.0185.

    TAO M, WANG J, LI Z W, et al. Meso-and micro-experimental research on the fracture of granite spallation under impact loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2172–2181. DOI: 10.13722/j.cnki.jrme.2019.0185.
    [13]
    LI X B, LOK T S, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate [J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 21–39. DOI: 10.1007/s00603-004-0030-7.
    [14]
    左婧, 徐卫亚, 王环玲, 等. 岩石电镜扫描图像的分形特征研究 [J]. 三峡大学学报(自然科学版), 2014, 36(2): 72–76. DOI: 10.13393/j.cnki.issn.1672-948x.2014.02.016.

    ZUO J, XU W Y, WANG H L, et al. Fractal analysis of SEM image for rocks [J]. Journal of China Three Gorges University (Natural Sciences), 2014, 36(2): 72–76. DOI: 10.13393/j.cnki.issn.1672-948x.2014.02.016.
    [15]
    谭赢, 刘希灵, 赵宇喆. 基于巴西劈裂试验的岩石声发射特性及断口特征分析 [J]. 实验力学, 2021, 36(2): 241–249. DOI: 10.7520/1001-4888-20-032.

    TAN Y, LIU X L, ZHAO Y Z. Acoustic emission parameter characteristics and fracture morphology analysis of rocks based on Brazilian splitting test [J]. Journal of Experimental Mechanics, 2021, 36(2): 241–249. DOI: 10.7520/1001-4888-20-032.
    [16]
    中华人民共和国住房和城乡建设部. 工程岩体试验方法标准: GB/T 50266-2013[S]. 北京: 中国计划出版社, 2013.
    [17]
    张文达. 花岗岩高温酸性环境水-岩作用特征及岩体劣化机制 [D]. 成都: 西南交通大学, 2021: 18–31. DOI: 10.27414/d.cnki.gxnju.2021.001367.

    ZHANG W D. Water-rock interaction characteristics and rock mass degradation mechanism of granite in high temperature and acid environment [D]. Chengdu: Southwest Jiaotong University, 2021: 18–31. DOI: 10.27414/d.cnki.gxnju.2021.001367.
    [18]
    吴秋红, 夏宇浩, 赵延林, 等. 基于DIC及CPG技术的热冷循环后花岗岩I型断裂特性研究 [J/OL]. 煤炭学报[2024-02-28]. https://doi.org/10.13225/j.cnki.jccs.2023.0974.

    WU Q H, XIA Y H, ZHAO Y L, et al. An integrated DIC and CPG investigation of the model-Ⅰ fracture features for granites after cyclic heating-cooling treatments [J/OL]. Journal of China Coal Society[2024-02-28]. https://doi.org/10.13225/j.cnki.jccs.2023.0974.
    [19]
    李夕兵, 宫凤强, 高科, 等. 一维动静组合加载下岩石冲击破坏试验研究 [J]. 岩石力学与工程学报, 2010, 29(2): 251–260.

    LI X B, GONG F Q, GAO K, et al. Test study of impact failure of rock subjected to one-dimensional coupled static and dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 251–260.
    [20]
    金解放, 李夕兵, 常军然, 等. 循环冲击作用下岩石应力应变曲线及应力波特性 [J]. 爆炸与冲击, 2013, 33(6): 613–619. DOI: 10.11883/1001-1455(2013)06-0613-07.

    JIN J F, LI X B, CHANG J R, et al. Stress-strain curve and stress wave characteristics of rock subjected to cyclic impact loadings [J]. Explosion and Shock Waves, 2013, 33(6): 613–619. DOI: 10.11883/1001-1455(2013)06-0613-07.
    [21]
    纪杰杰, 李洪涛, 吴发名, 等. 冲击荷载作用下岩石破碎分形特征 [J]. 振动与冲击, 2020, 39(13): 176–183, 214. DOI: 10.13465/j.cnki.jvs.2020.13.026.

    JI J J, LI H T, WU F M, et al. Fractal characteristics of rock fragmentation under impact load [J]. Journal of Vibration and Shock, 2020, 39(13): 176–183, 214. DOI: 10.13465/j.cnki.jvs.2020.13.026.
    [22]
    李乐, 王成, 张红成, 等. 冲击载荷下砂岩的动态力学特性及破坏机制 [J]. 煤炭工程, 2023, 55(9): 140–145. DOI: 10.11799/ce202309024.

    LI L, WANG C, ZHANG H C, et al. Dynamic mechanical properties and failure mechanism of sandstone under impact loads [J]. Coal Engineering, 2023, 55(9): 140–145. DOI: 10.11799/ce202309024.
    [23]
    杨军, 金乾坤, 黄风雷. 岩石爆破理论模型及数值计算 [M]. 北京: 科学出版社, 1999.

    YANG J, JIN Q K, HUANG F L. Theoretical model and numerical calculation of rock blasting [M]. Beijing: Science Press, 1999.
    [24]
    王春, 熊宏威, 舒荣华, 等. 高温处理后含铜矽卡岩的动态力学特性及损伤破碎特征 [J]. 中国有色金属学报, 2022, 32(9): 2801–2818. DOI: 10.11817/j.ysxb.1004.0609.2022-36737.

    WANG C, XIONG H W, SHU R H, et al. Dynamic mechanical characteristic and damage-fracture behavior of deep copper-bearing skarn after high temperature treatment [J]. The Chinese Journal of Nonferrous Metals, 2022, 32(9): 2801–2818. DOI: 10.11817/j.ysxb.1004.0609.2022-36737.
    [25]
    FALCONER K. 分形几何: 数学基础及其应用 [M]. 曾文曲, 译. 北京: 人民邮电出版社, 2007.

    FALCONER K. Mathematical foundations and applications [M]. Translated by ZENG W Q. Beijing: Posts & Telecom Press, 2007.
    [26]
    夏开文, 王峥, 吴帮标, 等. 流固耦合作用下深部岩石动态力学响应研究进展 [J]. 煤炭学报, 2024, 49(1): 454–478. DOI: 10.13225/j.cnki.jccs.2023.1381.

    XIA K W, WANG Z, WU B B, et al. Research progress on dynamic response of deep rocks under coupled hydraulic-mechanical loading [J]. Journal of China Coal Society, 2024, 49(1): 454–478. DOI: 10.13225/j.cnki.jccs.2023.1381.
    [27]
    HADIZADEH J, LAW R D. Water-weakening of sandstone and quartzite deformed at various stress and strain rates [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1991, 28(5): 431–439. DOI: 10.1016/0148-9062(91)90081-V.
    [28]
    ZHOU Z L, CAI X, MA D, et al. Water saturation effects on dynamic fracture behavior of sandstone [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 114: 46–61. DOI: 10.1016/j.ijrmms.2018.12.014.
    [29]
    周子龙, 蔡鑫, 周静, 等. 不同加载率下水饱和砂岩的力学特性研究 [J]. 岩石力学与工程学报, 2018, 37(S2): 4069–4075. DOI: 10.13722/j.cnki.jrme.2018.0571.

    ZHOU Z L, CAI X, ZHOU J, et al. Mechanical properties of saturated sandstone under different loading rates [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 4069–4075. DOI: 10.13722/j.cnki.jrme.2018.0571.
    [30]
    MAN K, LIU X L, SONG Z F, et al. Dynamic compression characteristics and failure mechanism of water-saturated granite [J]. Water, 2022, 14(2): 216. DOI: 10.3390/w14020216.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article Metrics

    Article views (177) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return