Citation: | ZHANG Yuanrui, ZHU Yudong, WANG Kehong, ZHOU Qi, YU Jilin, ZHENG Zhijun. Dynamic response analysis of cellular projectile impacting foam sandwich beam[J]. Explosion And Shock Waves, 2024, 44(9): 091442. doi: 10.11883/bzycj-2024-0045 |
[1] |
GUO H Y, YUAN H, ZHANG J X, et al. Review of sandwich structures under impact loadings: experimental, numerical and theoretical analysis [J]. Thin-Walled Structures, 2024, 196: 111541. DOI: 10.1016/j.tws.2023.111541.
|
[2] |
GAN E C J, REMENNIKOV A, RITZEL D, et al. Approximating a far-field blast environment in an advanced blast simulator for explosion resistance testing [J]. International Journal of Protective Structures, 2020, 11(4): 468–493. DOI: 10.1177/2041419620911133.
|
[3] |
ESPINOSA H D, LEE S, MOLDOVAN N. A novel fluid structure interaction experiment to investigate deformation of structural elements subjected to impulsive loading [J]. Experimental Mechanics, 2006, 46(6): 805–824. DOI: 10.1007/s11340-006-0296-7.
|
[4] |
GAN E C J, REMENNIKOV A, RITZEL D. Investigation of trees as natural protective barriers using simulated blast environment [J]. International Journal of Impact Engineering, 2021, 158: 104004. DOI: 10.1016/j.ijimpeng.2021.104004.
|
[5] |
REID S R, PENG C. Dynamic uniaxial crushing of wood [J]. International Journal of Impact Engineering, 1997, 19(5/6): 531–570. DOI: 10.1016/S0734-743X(97)00016-X.
|
[6] |
RADFORD D D, DESHPANDE V S, FLECK N A. The use of metal foam projectiles to simulate shock loading on a structure [J]. International Journal of Impact Engineering, 2005, 31(9): 1152–1171. DOI: 10.1016/j.ijimpeng.2004.07.012.
|
[7] |
RADFORD D D, FLECK N A, DESHPANDE V S. The response of clamped sandwich beams subjected to shock loading [J]. International Journal of Impact Engineering, 2006, 32(6): 968–987. DOI: 10.1016/j.ijimpeng.2004.08.007.
|
[8] |
RATHBUN H J, RADFORD D D, XUE Z, et al. Performance of metallic honeycomb-core sandwich beams under shock loading [J]. International Journal of Solids and Structures, 2006, 43(6): 1746–1763. DOI: 10.1016/j.ijsolstr.2005.06.079.
|
[9] |
TAGARIELLI V L, DESHPANDE V S, FLECK N A. The dynamic response of composite sandwich beams to transverse impact [J]. International Journal of Solids and Structures, 2007, 44(7/8): 2442–2457. DOI: 10.1016/j.ijsolstr.2006.07.015.
|
[10] |
RUBINO V, DESHPANDE V S, FLECK N A. The dynamic response of end-clamped sandwich beams with a Y-frame or corrugated core [J]. International Journal of Impact Engineering, 2008, 35(8): 829–844. DOI: 10.1016/j.ijimpeng.2007.10.006.
|
[11] |
JING L, WANG Z H, NING J G, et al. The dynamic response of sandwich beams with open-cell metal foam cores [J]. Composites Part B: Engineering, 2011, 42(1): 1–10. DOI: 10.1016/j.compositesb.2010.09.024.
|
[12] |
JING L, WANG Z H, NING J G, et al. The mechanical response of metallic sandwich beams under foam projectile impact loading [J]. Latin American Journal of Solids and Structures, 2011, 8(1): 107–120. DOI: 10.1590/S1679-78252011000100006.
|
[13] |
JING L, WANG Z H, ZHAO L M. The dynamic response of sandwich panels with cellular metal cores to localized impulsive loading [J]. Composites Part B: Engineering, 2016, 94: 52–63. DOI: 10.1016/j.compositesb.2016.03.035.
|
[14] |
JING L, WANG Z H, ZHAO L M. Response of metallic cylindrical sandwich shells subjected to projectile impact: experimental investigations [J]. Composite Structures, 2014, 107: 36–47. DOI: 10.1016/j.compstruct.2013.07.011.
|
[15] |
LI X, LI S Q, WANG Z H, et al. Response of aluminum corrugated sandwich panels under foam projectile impact: experiment and numerical simulation [J]. Journal of Sandwich Structures & Materials, 2017, 19(5): 595–615. DOI: 10.1177/1099636216630503.
|
[16] |
LI X, ZHANG P W, LI S Q, et al. Dynamic response of aluminum honeycomb sandwich panels under foam projectile impact [J]. Mechanics of Advanced Materials and Structures, 2018, 25(8): 637–646. DOI: 10.1080/15376494.2017.1308595.
|
[17] |
ZHAO Z, JING L. The response of clamped sandwich panels with layered-gradient aluminum foam cores to foam projectile impact [J]. Mechanics of Advanced Materials and Structures, 2020, 27(9): 744–753. DOI: 10.1080/15376494.2018.1495790.
|
[18] |
魏建辉, 李旭, 黄威, 等. 高速冲击载荷下梯度金属泡沫夹芯梁的动态响应与失效 [J]. 爆炸与冲击, 2023, 43(5): 053301. DOI: 10.11883/bzycj-2022-0156.
WEI J H, LI X, HUANG W, et al. Dynamic response and failure of sandwich beams with graded metal foam core under high-velocity impact [J]. Explosion and Shock Waves, 2023, 43(5): 053301. DOI: 10.11883/bzycj-2022-0156.
|
[19] |
ZHANG J X, ZHU Y Q, LI K K, et al. Dynamic response of sandwich plates with GLARE face-sheets and honeycomb core under metal foam projectile impact: Experimental and numerical investigations [J]. International Journal of Impact Engineering, 2022, 164: 104201. DOI: 10.1016/j.ijimpeng.2022.104201.
|
[20] |
XIAO D B, CHEN X Q, LI Y, et al. The structure response of sandwich beams with metallic auxetic honeycomb cores under localized impulsive loading: experiments and finite element analysis [J]. Materials & Design, 2019, 176: 107840. DOI: 10.1016/j.matdes.2019.107840.
|
[21] |
LI Y, CHEN Z H, XIAO D B, et al. The dynamic response of shallow sandwich arch with auxetic metallic honeycomb core under localized impulsive loading [J]. International Journal of Impact Engineering, 2020, 137: 103442. DOI: 10.1016/j.ijimpeng.2019.103442.
|
[22] |
CHEN Z H, LIU L W, GAO S L, et al. Dynamic response of sandwich beam with star-shaped reentrant honeycomb core subjected to local impulsive loading [J]. Thin-Walled Structures, 2021, 161: 107420. DOI: 10.1016/j.tws.2020.107420.
|
[23] |
YU R P, WANG X, ZHANG Q C, et al. Effects of sand filling on the dynamic response of corrugated core sandwich beams under foam projectile impact [J]. Composites Part B: Engineering, 2020, 197: 108135. DOI: 10.1016/j.compositesb.2020.108135.
|
[24] |
WANG X, YU R P, ZHANG Q C, et al. Dynamic response of clamped sandwich beams with fluid-filled corrugated cores [J]. International Journal of Impact Engineering, 2020, 139: 103533. DOI: 10.1016/j.ijimpeng.2020.103533.
|
[25] |
张元瑞, 朱玉东, 郑志军, 等. 泡沫子弹冲击固支单梁的耦合分析模型 [J]. 力学学报, 2022, 54(8): 2161–2172. DOI: 10.6052/0459-1879-22-223.
ZHANG Y R, ZHU Y D, ZHENG Z J, et al. A coupling analysis model of clamped monolithic beam impacted by foam projectiles [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2161–2172. DOI: 10.6052/0459-1879-22-223.
|
[26] |
RADFORD D D, MCSHANE G J, DESHPANDE V S, et al. The response of clamped sandwich plates with metallic foam cores to simulated blast loading [J]. International Journal of Solids and Structures, 2006, 43(7/8): 2243–2259. DOI: 10.1016/j.ijsolstr.2005.07.006.
|
[27] |
WANG Z H, JING L, NING J G, et al. The structural response of clamped sandwich beams subjected to impact loading [J]. Composite Structures, 2011, 93(4): 1300–1308. DOI: 10.1016/j.compstruct.2010.05.011.
|
[28] |
QIU X, DESHPANDE V S, FLECK N A. Impulsive loading of clamped monolithic and sandwich beams over a central patch [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(5): 1015–1046. DOI: 10.1016/j.jmps.2004.12.004.
|
[29] |
YUE Z S, WANG X, HE C, et al. Elevated shock resistance of all-metallic sandwich beams with honeycomb-supported corrugated cores [J]. Composites Part B: Engineering, 2022, 242: 110102. DOI: 10.1016/j.compositesb.2022.110102.
|
[30] |
ZHENG Z J, WANG C F, YU J L, et al. Dynamic stress-strain states for metal foams using a 3D cellular model [J]. Journal of the Mechanics and Physics of Solids, 2014, 72: 93–114. DOI: 10.1016/j.jmps.2014.07.013.
|
[31] |
YANG J, WANG S L, DING Y Y, et al. Crashworthiness of graded cellular materials: A design strategy based on a nonlinear plastic shock model [J]. Materials Science and Engineering: A, 2017, 680: 411–420. DOI: 10.1016/j.msea.2016.11.010.
|
[32] |
LI Q M, JONES N. Shear and adiabatic shear failures in an impulsively loaded fully clamped beam [J]. International Journal of Impact Engineering, 1999, 22(6): 589–607. DOI: 10.1016/S0734-743X(99)00013-5.
|
[33] |
ZHANG Y R, ZHU Y D, CHANG B X, et al. Blast-loading simulators: Multiscale design of graded cellular projectiles considering projectile-beam coupling effect [J]. Journal of the Mechanics and Physics of Solids, 2023, 180: 105402. DOI: 10.1016/j.jmps.2023.105402.
|