Processing math: 100%
WU Xuting, WANG Zhen, ZHOU Hang, ZHANG Guokai, LI Shuobiao. Study on dynamic mechanical properties of high-temperature concrete with different cooling methods[J]. Explosion And Shock Waves, 2025, 45(1): 011001. doi: 10.11883/bzycj-2024-0097
Citation: WANG Zhiqiang, YANG Hongsheng, ZHOU Fenghua. Bending waves excited by bending fractures of brittle beams[J]. Explosion And Shock Waves, 2024, 44(9): 091424. doi: 10.11883/bzycj-2024-0046

Bending waves excited by bending fractures of brittle beams

doi: 10.11883/bzycj-2024-0046
  • Received Date: 2024-01-30
  • Rev Recd Date: 2024-08-22
  • Available Online: 2024-08-26
  • Publish Date: 2024-09-20
  • Under pure bending, a brittle slender beam may undergo sudden fracture, leading to the occurrence of secondary fractures near the initial fracture point. Studies suggest that the secondary fractures are induced by the unloading bending wave released from the initial fracture. Unloading causes an overshoot of the bending moment near the location of the initial fracture. Traditional Euler-Bernoulli beam theory cannot describe the wave propagation phenomena resulting from sudden loading or unloading. In this paper, the bending fracture problem is analyzed based on Timoshenko beam theory. In this theory, the bending wave velocity is finite, and it possesses an intrinsic characteristic time. Utilizing Timoshenko beam theory and incorporating a brittle cohesive bending fracture model containing fracture energy, an initial-boundary value problem is established for the one-dimensional propagation of bending waves. The problem with three boundary conditions is solved using the characteristic line method: (1) the beam is suddenly applied with a boundary transverse velocity; (2) the beam is suddenly applied with a boundary bending moment; (3) the beam initially bears a constant moment, which is released according to a cohesive bending fracture law. Through numerical calculations, the dynamic responses of the beam under these three conditions are presented. Initially, the problems (1) and (2) are calculated using the characteristic line method, validating the feasibility of this approach. Subsequently, by calculating problem (3), the impact of fracture energy on fracture time and peak moment is analyzed. The study reveals that once a beam in a pure bending state undergoes instantaneous fracture, the shortest distance between the point of secondary fracture and the point of primary fracture is 5 times characteristic length. When the non-dimensional fracture energy is 1.4×10−4, the location at 17.7 characteristic lengths from the initial fracture point exhibits a peak moment with an amplitude of 1.67, making it the most likely position for secondary fracture. Larger fracture energy prolongs the fracture time, resulting in a more distant peak moment position and a corresponding reduction in peak load.
  • [1]
    FEYNMAN R P, SYKES C. No ordinary genius: the illustrated Richard Feynman [M]. New York: Norton, 1994: 180–181.
    [2]
    SCHINDLER H J, KOLSKY H. Multiple fractures produced by the bending of brittle beams [J]. Journal of the Mechanics and Physics of Solids, 1983, 31(5): 427–436. DOI: 10.1016/0022-5096(83)90008-X.
    [3]
    AUDOLY B, NEUKIRCH S. Fragmentation of rods by cascading cracks: why spaghetti does not break in half [J]. Physical Review Letters, 2005, 95(9): 095505. DOI: 10.1103/PhysRevLett.95.095505.
    [4]
    TIMOSHENKO S P. On the correction for shear of the differential equation for transverse vibrations of prismatic bars [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1921, 41(245): 744–746. DOI: 10.1080/14786442108636264.
    [5]
    龙龙, 郑宇轩, 周风华, 等. 铁木辛柯梁中的卸载弯曲波及二次断裂 [J]. 力学学报, 2021, 53(6): 1658–1670. DOI: 10.6052/0459-1879-21-106.

    LONG L, ZHENG Y X, ZHOU F H, et al. Unloading flexural stress wave in a Timoshenko beam and the secondary fracture of the beam [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1658–1670. DOI: 10.6052/0459-1879-21-106.
    [6]
    李永池. 波动力学[M]. 2版. 合肥: 中国科学技术大学出版社, 2018: 9–10.
    [7]
    李凤云. 脆性梁的弯曲波传播问题研究[D]. 浙江宁波: 宁波大学, 2018: 8–28.

    LI F Y. Flexural wave propagation in brittle material[D]. Ningbo University. 2018: 8–28.
    [8]
    LEONARD R W, BUDIANSKY B. On traveling waves in beams: NACA-TR-1173 [R]. USA: NASA, 1954.
    [9]
    AL-MOUSAWI M M. Transient response of Timoshenko beams with discontinuities of cross-section [J]. International Journal of Mechanical Sciences, 1984, 26(4): 277–292. DOI: 10.1016/0020-7403(84)90048-1.
    [10]
    AL-MOUSAWI M M. On experimental studies of longitudinal and flexural wave propagations: an annotated bibliography [J]. Applied Mechanics Reviews, 1986, 39(6): 853–865. DOI: 10.1115/1.3149516.
    [11]
    BOLEY B A, CHAO C C. Some solutions of the Timoshenko beam equations [J]. Journal of Applied Mechanics, 1955, 22(4): 579–586. DOI: 10.1115/1.4011158.
    [12]
    MORTON K W, MAYERS D F. Numerical solution of partial differential equations [M]. New York: Cambridge University Press, 2005: 89–93.
    [13]
    KIPP M E, GRADY D E. Dynamic fracture growth and interaction in one dimension [J]. Journal of the Mechanics and Physics of Solids, 1985, 33(4): 399–415. DOI: 10.1016/0022-5096(85)90036-5.
    [14]
    HEISSER R H, PATIL V P, STOOP N, et al. Controlling fracture cascades through twisting and quenching [J]. Proceedings of the National Academy of Sciences, 2018, 115(35): 8665–8670. DOI: 10.1073/pnas.1802831115.
    [15]
    龙龙. 弯曲断裂和弯曲应力波的相关问题研究[D]. 浙江宁波: 宁波大学, 2021: 75–108.

    LONG L. Research on flexural fracture and flexural stress wave [D]. Ningbo University, 2021: 75–108.
  • Relative Articles

    [1]LI Haokai, FENG Yuxiang, LI Yuan, SUO Tao. Power characteristics of drum-shaped warheads under multi-point detonations[J]. Explosion And Shock Waves, 2024, 44(3): 031403. doi: 10.11883/bzycj-2023-0317
    [2]DU Bojun, LIU Zeqing, WANG Yalin, XU Yong, LI Qianwu. A test method of motion parameters of static explosion based on high-speed photography[J]. Explosion And Shock Waves, 2019, 39(9): 094101. doi: 10.11883/bzycj-2018-0175
    [3]Hu Shi-sheng, Wang Li-li, Song Li, Zhang Lei. Review of the development of Hopkinson pressure bar technique in China[J]. Explosion And Shock Waves, 2014, 34(6): 641-657. doi: 10.11883/1001-1455(2014)06-0641-17
    [4]YAN Zhi-xin, LIU Pei-lin, YE Zhen-hui. Directionalblastingcollapseprocess offrame-shearwallstructure[J]. Explosion And Shock Waves, 2011, 31(6): 647-652. doi: 10.11883/1001-1455(2011)06-0647-06
    [5]HUANG Tao, CHEN Peng-wan, ZHANG Guo-xin, YANG Jun. Numerical simulation of two-hole blasting using numerical manifold method[J]. Explosion And Shock Waves, 2006, 26(5): 434-440. doi: 10.11883/1001-1455(2006)05-0434-07
  • Cited by

    Periodical cited type(4)

    1. 韩明海,刘闯,李鹏程,刘子涵,张先锋. 弹体高速侵彻花岗岩靶体的结构响应特性. 爆炸与冲击. 2025(01): 104-124 . 本站查看
    2. 薛颖杰,陈智刚,杨芮,崔晋,康彦姝,付建平. 椭圆截面弹体侵彻多层混凝土靶的数值仿真. 中北大学学报(自然科学版). 2025(01): 35-44 .
    3. 蒋腾,武海军,邓希旻,全鑫,董恒,黄风雷. 变截面弹体斜侵彻两层间隔钢靶弹道特性. 兵工学报. 2025(02): 192-207 .
    4. 董恒,黄风雷,武海军,邓希旻,李萌,刘龙龙. 异形弹体高速侵彻/穿甲机理研究进展. 兵工学报. 2024(09): 2863-2887 .

    Other cited types(0)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views (220) PDF downloads(46) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return