Citation: | DU Ye, ZHOU Weizhi, HUANG Qiuan, LI Qiang. Research on an equivalent simulation experimental technology for overloading environmental forces of charge[J]. Explosion And Shock Waves, 2024, 44(7): 074101. doi: 10.11883/bzycj-2024-0048 |
[1] |
王宁. 弹体侵彻素混凝土过程中装药动态响应机理研究 [D]. 南京: 南京理工大学, 2017: 27–56. DOI: 10.7666/d.Y3548125.
WANG N. Dynamic response of charges in projectiles during penetrating into concrete target [D]. Nanjing: Nanjing University of Science and Technology, 2017: 27–56. DOI: 10.7666/d.Y3548125.
|
[2] |
成丽蓉, 汪德武, 贺元吉. 侵彻单层和多层靶时战斗部装药损伤及热点生成机理研究 [J]. 兵工学报, 2020, 41(1): 32–39. DOI: 10.3969/j.issn.1000-1093.2020.01.004.
CHENG L R, WANG D W, HE Y J. Research on the damage and hot-spot generation in explosive charges during penetration into single- or multi-layer target [J]. Acta Armamentarii, 2020, 41(1): 32–39. DOI: 10.3969/j.issn.1000-1093.2020.01.004.
|
[3] |
AYDEMIR E, ULAS A, SERIN N. Thermal decomposition and ignition of PBXN-110 plastic-bonded explosive [J]. Propellants, Explosives, Pyrotechnics, 2012, 37(3): 308–315. DOI: 10.1002/prep.201100011.
|
[4] |
刘卫, 张蕊, 沈瑞琪, 等. 高过载条件下火工品装药的响应特性 [J]. 兵工学报, 2016, 37(S2): 191–196.
LIU W, ZHANG R, SHEN R Q, et al. Response characteristics of explosive charge in initiator under high-g loading [J]. Acta Armamentarii, 2016, 37(S2): 191–196.
|
[5] |
高昌印. 过载性能试验台设计及微型涡喷抗过载性能研究 [D]. 南京: 南京理工大学, 2016: 34–37. DOI: 10.7666/d.Y3198350.
GAO C Y. Design of overload performance test bench and study on anti-overload performance of micro-turbine [D]. Nanjing: Nanjing University of Science and Technology, 2016: 34–37. DOI: 10.7666/d.Y3198350.
|
[6] |
李创新, 沈瑞琪, 刘卫, 等. 高加速度冲击过载下桥丝式电雷管的损伤特性研究 [J]. 火工品, 2012(3): 1–4. DOI: 10.3969/j.issn.1003-1480.2012.03.002.
LI C X, SHEN R Q, LIU W, et al. Research on damage characteristics of bridgewire electric detonator under high acceleration loading [J]. Initiators and Pyrotechnics, 2012(3): 1–4. DOI: 10.3969/j.issn.1003-1480.2012.03.002.
|
[7] |
王艳华. 火工品过载试验研究及数值模拟仿真 [D]. 太原: 中北大学, 2010: 20–31. DOI: 10.7666/d.D315111.
WANG Y H. The study of the initiator overloading on experiment and the numerical simulation analyses [D]. Taiyuan: North University of China, 2010: 20–31. DOI: 10.7666/d.D315111.
|
[8] |
邓琼, 李玉龙, 索涛, 等. 火工品高过载动态力学性能测试方法研究 [J]. 火工品, 2007(1): 28–31. DOI: 10.3969/j.issn.1003-1480.2007.01.009.
DENG Q, LI Y L, SUO T, et al. Test method on dynamic mechanical behavior of initiating explosive device under high acceleration [J]. Initiators and Pyrotechnics, 2007(1): 28–31. DOI: 10.3969/j.issn.1003-1480.2007.01.009.
|
[9] |
徐鹏, 祖静, 范锦彪. 高g值加速度冲击试验技术研究 [J]. 振动与冲击, 2011, 30(4): 241–243, 253. DOI: 10.13465/j.cnki.jvs.2011.04.009.
XU P, ZU J, FAN J B. Acceleration shock test technology with higher values of g [J]. Journal of Vibration and Shock, 2011, 30(4): 241–243, 253. DOI: 10.13465/j.cnki.jvs.2011.04.009.
|
[10] |
周广宇, 胡时胜. 高g值加速度发生器中的波形整形技术 [J]. 爆炸与冲击, 2013, 33(5): 479–486. DOI: 10.11883/1001-1455(2013)05-0479-08.
ZHOU G Y, HU S S. Pulse-shaping techniques of high-g-value acceleration generators [J]. Explosion and Shock Waves, 2013, 33(5): 479–486. DOI: 10.11883/1001-1455(2013)05-0479-08.
|
[11] |
赵欣, 丁继锋, 韩增尧, 等. 航天器火工冲击模拟试验及响应预示方法研究综述 [J]. 爆炸与冲击, 2016, 36(2): 259–268. DOI: 10.11883/1001-1455(2016)02-0259-10.
ZHAO X, DING J F, HAN Z Y, et al. Review of pyroshock simulation and response prediction methods in spacecraft [J]. Explosion and Shock Waves, 2016, 36(2): 259–268. DOI: 10.11883/1001-1455(2016)02-0259-10.
|
[12] |
门士滢. 高过载宽脉冲空气击锤设计及试验技术研究 [D]. 南京: 南京理工大学, 2014: 14–21. DOI: 10.7666/d.Y2520469.
|
[13] |
何小斌. 火工品过载特性落球碰撞模拟试验研究 [D]. 南京: 南京理工大学, 2010: 11–16. DOI: 10.7666/d.Y1697799.
HE X B. Research on overload characteristics of initiating device by falling ball collision simulation tests [D]. Nanjing: Nanjing University of Science and Technology, 2010: 11–16. DOI: 10.7666/d.Y1697799.
|
[14] |
满晓飞, 门士滢, 马少杰, 等. 空气击锤装置模拟硬目标侵彻实验方法 [J]. 探测与控制学报, 2016, 38(3): 90–93.
MAN X F, MEN S Y, MA S J, et al. Using air hammer device simulate hard target penetration process [J]. Journal of Detection and Control, 2016, 38(3): 90–93.
|
[15] |
陈健. 空气炮力学过载模拟试验波形展宽研究 [D]. 南京: 南京理工大学, 2018: 11–20. DOI: 10.27241/d.cnki.gnjgu.2019.001187.
CHEN J. Research on waveform-broadening of mechanical overload simulation test on air gun [D]. Nanjing: Nanjing University of Science and Technology, 2018: 11–20. DOI: 10.27241/d.cnki.gnjgu.2019.001187.
|
[16] |
许志峰, 屈可朋. 装药发射安全性模拟加载实验方法研究 [J]. 火工品, 2015(6): 51–53. DOI: 10.3969/j.issn.1003-1480.2015.06.014.
XU Z F, QU K P. Study on experimental method of simulation loading for launch safety of charge [J]. Initiators and Pyrotechnics, 2015(6): 51–53. DOI: 10.3969/j.issn.1003-1480.2015.06.014.
|
[17] |
刘计划, 赵宏立, 何昌辉, 等. 冲击载荷作用下典型发射药的弹性模量分析方法 [J]. 兵工学报, 2021, 42(2): 289–296. DOI: 10.3969/j.issn.1000-1093.2021.02.007.
LIU J H, ZHAO H L, HE C H, et al. Analysis method for elastic modulus of typical gun-propellant under impact loading [J]. Acta Armamentarii, 2021, 42(2): 289–296. DOI: 10.3969/j.issn.1000-1093.2021.02.007.
|
[18] |
STARKENBERG J J, MCFADDEN D L, LYMAN O R. Cavity collapse ignition of composition B in the launch environment: BRL-TR-2714 [R]. Adelphi, USA: US Army Ballistic Research Laboratory, 1986.
|
[19] |
芮筱亭, 冯宾宾, 王燕, 等. 发射装药发射安全性评定方法研究 [J]. 兵工学报, 2015, 36(1): 1–11. DOI: 10.3969/j.issn.1000-1093.2015.01.001.
RUI X T, FENG B B, WANG Y, et al. Research on evaluation method for launch safety of propellant charge [J]. Acta Armamentarii, 2015, 36(1): 1–11. DOI: 10.3969/j.issn.1000-1093.2015.01.001.
|
[20] |
屈可朋, 肖玮, 李亮亮. 炸药装药侵彻安全性模拟实验方法研究 [J]. 火工品, 2017(1): 46–48. DOI: 10.3969/j.issn.1003-1480.2017.01.013.
QU K P, XIAO W, LI L L. Study on simulating experimental method for the safety of explosive charge during penetration [J]. Initiators and Pyrotechnics, 2017(1): 46–48. DOI: 10.3969/j.issn.1003-1480.2017.01.013.
|
[21] |
KIM B S, LEE J. Development of impact test device for pyroshock simulation using impact analysis [J]. Aerospace, 2022, 9(8): 407. DOI: 10.3390/aerospace9080407.
|
[22] |
周霖, 倪磊, 李东伟, 等. 炸药抗过载性能试验方法 [J]. 兵工学报, 2023, 44(6): 1722–1732. DOI: 10.12382/bgxb.2022.0074.
ZHOU L, NI L, LI D W, et al. Test method for anti-overload performance of explosives [J]. Acta Armamentarii, 2023, 44(6): 1722–1732. DOI: 10.12382/bgxb.2022.0074.
|
[23] |
SUN M, LI J C, ZHANG H Y, et al. Effect of relative density and grain size on the internal flow field during the ballistic penetration of sand [J]. International Journal of Impact Engineering, 2024, 185: 104859. DOI: 10.1016/j.ijimpeng.2023.104859.
|
[24] |
王励自. 聚能装药对岩土介质侵彻机理研究与分析 [D]. 成都: 西南交通大学, 2002: 27–31. DOI: 10.7666/d.y505487.
WANG L Z. Study and analysis on penetration of shaped charge into rock and soil media [D]. Chengdu: Southwest Jiaotong University, 2002: 27–31. DOI: 10.7666/d.y505487.
|
[25] |
李淑睿, 段卓平, 白志玲, 等. 2, 4-二硝基苯甲醚基熔铸含铝炸药冲击起爆特性 [J]. 兵工学报, 2022, 43(6): 1288–1294. DOI: 10.12382/bgxb.2021.0354.
LI S R, DUAN Z P, BAI Z L, et al. Shock initiation characteristics of DNAN-based aluminized melt-cast explosive [J]. Acta Armamentarii, 2022, 43(6): 1288–1294. DOI: 10.12382/bgxb.2021.0354.
|
[26] |
覃锦程, 裴红波, 李星翰, 等. 弹黏塑性热点模型的冲击起爆临界条件 [J]. 高压物理学报, 2018, 32(3): 035202. DOI: 10.11858/gywlxb.20170656.
QIN J C, PEI H B, LI X H, et al. Shock initiation thresholds of heterogeneous explosives with elastic-visco-plastic hot spot model [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035202. DOI: 10.11858/gywlxb.20170656.
|
[27] |
李金河, 曾代朋, 傅华, 等. 一种研究炸药反应阈值的新方法 [J]. 实验力学, 2015, 30(3): 363–366. DOI: 10.7520/1001-4888-14-271.
LI J H, ZENG D P, FU H, et al. On a new method to study the reaction threshold of explosive [J]. Journal of Experimental Mechanics, 2015, 30(3): 363–366. DOI: 10.7520/1001-4888-14-271.
|