Turn off MathJax
Article Contents
ZHAO Yufeng, DUAN Ji, FENG Shunshan. A study of the failure of cased charge under impact of reactive fragments[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0063
Citation: ZHAO Yufeng, DUAN Ji, FENG Shunshan. A study of the failure of cased charge under impact of reactive fragments[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0063

A study of the failure of cased charge under impact of reactive fragments

doi: 10.11883/bzycj-2024-0063
  • Received Date: 2024-03-07
  • Rev Recd Date: 2024-06-01
  • Available Online: 2024-06-06
  • Reactive fragments are composed of multifunctional impact reactive structural materials. After reactive fragments penetrate the front target of warhead, the debris cloud generated by the sufficient reaction of reactive material will damage the medium behind the target in the form of kinetic energy-chemical energy coupling damage. Ballistic impact experiments and finite element simulations were conducted to investigate the impact damage effect of reactive fragments on cased charge. Based on the criteria for failure levels of cased charge characterized by equivalent fragments initial velocity and equivalent gurney velocity, the ratio of the equivalent gurney velocity under abnormal detonation conditions to gurney velocity or the ratio of the equivalent fragments initial velocity under abnormal detonation conditions to the fragments initial velocity is used to measure the reaction violence of the cased charge. Equivalent gurney velocity of cased charge under impact of inert fragments and reactive fragments, response duration of cased charge, the damage of the authentication target, and the peak pressure of explosive layer are compared. The influence of energy release characteristics of reactive fragments on the failure of cased charge is also analyzed. The results show that explosive detonate under the impact of inert fragments, while explosive deflagrate or explode under the impact of reactive fragments. The steel verification target only presents significant circular pit during explosive detonation. The explosive detonation process captured by high-speed photography is on the microsecond scale, while the explosive explosion or deflagration process is on the millisecond scale. Under the penetration of six reactive fragments, the corresponding ratio of equivalent gurney velocity to gurney velocity ranges from 0.014 to 0.233, which is far below the ratio of equivalent gurney velocity to gurney velocity under the condition of inert fragments penetrating cased charges. By using AUTODYN, the peak pressure at the observation point on the axis of the cased charge during detonation failure under the penetration of inert fragments ranges from 17.3 to 34.5 GPa, while the peak pressure of cased charge during deflagration failure under the penetration of reactive fragments ranges from 1.04 to 3.62 GPa, which is far below the critical detonation pressure. Based on the ratio of the equivalent gurney velocity to gurney velocity, the peak pressure of explosive and superimposed effect of kinetic energy and chemical energy of reactive fragments, the idea that it is difficult to detonate cased charge under the penetration of reactive fragments is proposed.
  • loading
  • [1]
    FENG S S, WANG C L, HUANG G Y. Experimental study on the reaction zone distribution of impact-induced reactive materials [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(8): 896–905. DOI: 10.1002/prep.201600274.
    [2]
    冯顺山, 李伟, 周彤, 等. 内置冲击反应材料弹丸壳体侵彻损伤效应研究 [J]. 兵工学报, 2016, 37(S2): 61–68.

    FENG S S, LI W, ZHOU T, et al. Research on damage effect of a warhead filled with reactive materials [J]. Acta Armamentarii, 2016, 37(S2): 61–68.
    [3]
    顾阳晨, 王金相, 陈兴旺, 等. 高速动能破片和包覆活性材料对屏蔽装药的串联毁伤效应 [J]. 含能材料, 2021, 29(7): 607–616. DOI: 10.11943/CJEM2020328.

    GU Y C, WANG J X, CHEN X W, et al. Tandem damage effect of high-speed kinetic fragments and coated active materials on shielded charges [J]. Chinese Journal of Energetic Materials, 2021, 29(7): 607–616. DOI: 10.11943/CJEM2020328.
    [4]
    赵宏伟, 余庆波, 邓斌, 等. 活性破片终点毁伤威力试验研究 [J]. 北京理工大学学报, 2020, 40(4): 375–381. DOI: 10.15918/j.tbit1001-0645.2019.092.

    ZHAO H W, YU Q B, DENG B, et al. Experimental study on terminal demolition lethality of reactive fragments [J]. Transactions of Beijing Institute of Technology, 2020, 40(4): 375–381. DOI: 10.15918/j.tbit1001-0645.2019.092.
    [5]
    罗普光. 钨锆含能破片冲击反应特性及其对屏蔽炸药的毁伤研究 [D]. 北京: 北京理工大学, 2017: 72–78.

    LUO P G. Study on impact-initiated characters of W/Zr energetic fragments and damage effect to shielded explosives [D]. Beijing: Beijing Institute of Technology, 2017: 72–78.
    [6]
    周杰, 何勇, 何源, 等. 含能毁伤元冲击引爆模拟战斗部试验研究 [J]. 含能材料, 2016, 24(11): 1048–1056. DOI: 10.11943/J.ISSN.1006-9941.2016.11.003.

    ZHOU J, HE Y, HE Y, et al. Experimental study on shock initiation of simulative warhead by energetic kill element [J]. Chinese Journal of Energetic Materials, 2016, 24(11): 1048–1056. DOI: 10.11943/J.ISSN.1006-9941.2016.11.003.
    [7]
    梁君夫. 活性破片作用屏蔽装药引爆增强效应研究 [D]. 北京: 北京理工大学, 2016: 63–68.

    LIANG J F. Research on enhanced initiation behavior of reactive material fragment impacting covered explosive [D]. Beijing: Beijing Institute of Technology, 2016: 63–68.
    [8]
    李旭锋, 李向东, 顾文彬, 等. 含能破片引爆带壳炸药过程的数值模拟 [J]. 爆炸与冲击, 2014, 34(2): 202–208. DOI: 10.11883/1001-1455(2014)02-0202-07.

    LI X F, LI X D, GU W B, et al. Numerical simulation on detonating shelled explosives by energetic fragments [J]. Explosion and Shock Waves, 2014, 34(2): 202–208. DOI: 10.11883/1001-1455(2014)02-0202-07.
    [9]
    王海福, 郑元枫, 余庆波, 等. 活性破片引爆屏蔽装药机理研究 [J]. 北京理工大学学报, 2012, 32(8): 786–789,823. DOI: 10.3969/j.issn.1001-0645.2012.08.004.

    WANG H F, ZHENG Y F, YU Q B, et al. Study on initiation mechanism of reactive fragment to covered explosive [J]. Transactions of Beijing Institute of Technology, 2012, 32(8): 786–789,823. DOI: 10.3969/j.issn.1001-0645.2012.08.004.
    [10]
    何源, 何勇, 潘绪超, 等. 含能破片冲击引爆屏蔽炸药研究 [J]. 南京理工大学学报, 2011, 35(2): 187–193. DOI: 10.3969/j.issn.1005-9830.2011.02.008.

    HE Y, HE Y, PAN X C, et al. Initiation of shielded high explosive impacted by energetic fragment [J]. Journal of Nanjing University of Science and Technology, 2011, 35(2): 187–193. DOI: 10.3969/j.issn.1005-9830.2011.02.008.
    [11]
    叶小军, 李向东. 含能破片撞击引燃屏蔽炸药的实验研究 [J]. 弹箭与制导学报, 2009, 29(6): 131–134. DOI: 10.3969/j.issn.1673-9728.2009.06.036.

    YE X J, LI X D. Experimental study on reactive fragments ignited charge covered with a metal plateafter the impact [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(6): 131–134. DOI: 10.3969/j.issn.1673-9728.2009.06.036.
    [12]
    GURNEY R W. The initial velocities of fragments from bombs, shell, and grenades [R]. Aberdeen: Ballistic Research Laboratory, 1943.
    [13]
    LI W, HUANG G Y, FENG S S. Effect of eccentric edge initiation on the fragment velocity distribution of a cylindrical casing filled with charge [J]. International Journal of Impact Engineering, 2015, 80: 107–115. DOI: 10.1016/j.ijimpeng.2015.01.007.
    [14]
    冯顺山, 蒋建伟, 何顺录, 等. 偏轴心起爆破片初速径向分布规律研究 [J]. 兵工学报, 1993, 14(S1): 12–16.

    FENG S S, JIANG J W, HE S L, et al. On the pattern of radial distribution pattern of initial velocities of fragments under asymmetrical initiation [J]. Acta Armamentarii, 1993, 14(S1): 12–16.
    [15]
    冯顺山, 崔秉贵. 战斗部破片初速轴向分布规律的实验研究 [J]. 兵工学报, 1987, 8(4): 60–63.

    FENG S S, CUI B G. An experimental investigation for the axial distribution of initial velocity of shells [J]. Acta ArmamentarⅡ, 1987, 8(4): 60–63.
    [16]
    冯顺山, 赵宇峰, 边江楠, 等. 动能侵彻体冲击带壳炸药装药的爆燃失效 [J]. 含能材料, 2019, 27(6): 521–527. DOI: 10.11943/CJEM2018215.

    FENG S S, ZHAO Y F, BIAN J N, et al. Deflagration failure of explosive cased charge under impact of kinetic energy penetrators [J]. Chinese Journal of Energetic Materials, 2019, 27(6): 521–527. DOI: 10.11943/CJEM2018215.
    [17]
    Naval Sea Systems Command. MIL-STD-2105E Hazard assessment tests for non-nuclear munitions [S]. Washington: Naval Sea Systems Command, 2022.
    [18]
    孙业斌. 爆炸作用与装药设计 [M]. 北京: 国防工业出版社, 1987: 76–78.

    SUN Y B. Explosion effect and charge design [M]. Beijing: National Defense Industry Press, 1987: 76–78.
    [19]
    RAFTENBERG M N, MOCK W, KIRBY G C. Modeling the impact deformation of rods of a pressed PTFE/Al composite mixture [J]. International Journal of Impact Engineering, 2008, 35(12): 1735–1744. DOI: 10.1016/j.ijimpeng.2008.07.041.
    [20]
    陈刚, 陈忠富, 徐伟芳, 等. 45钢的J-C损伤失效参量研究 [J]. 爆炸与冲击, 2007, 27(2): 131–135. DOI: 10.11883/1001-1455(2007)02-0131-05.

    CHEN G, CHEN Z F, XU W F, et al. Investigation on the J-C ductile fracture parameters of 45 steel [J]. Explosion and Shock Waves, 2007, 27(2): 131–135. DOI: 10.11883/1001-1455(2007)02-0131-05.
    [21]
    陈刚, 陈忠富, 陶俊林, 等. 45钢动态塑性本构参量与验证 [J]. 爆炸与冲击, 2005, 25(5): 451–456. DOI: 10.11883/1001-1455(2005)05-0451-06.

    CHEN G, CHEN Z F, TAO J L, et al. Investigation and validation on plastic constitutive parameters of 45 steel [J]. Explosion and Shock Waves, 2005, 25(5): 451–456. DOI: 10.11883/1001-1455(2005)05-0451-06.
    [22]
    吴曼林, 刘玉存. 冲击波感度试验(SSGT)的数值模拟 [J]. 火工品, 2004(2): 16–19. DOI: 10.3969/j.issn.1003-1480.2004.02.005.

    WU M L, LIU Y C. Numerical modeling of shock sensitivity experiments (SSGT) [J]. Initiators & Pyrotechnics, 2004(2): 16–19. DOI: 10.3969/j.issn.1003-1480.2004.02.005.
    [23]
    章冠人, 陈大年. 凝聚炸药起爆动力学 [M]. 北京: 国防工业出版社, 1991: 109.

    ZHANG G R, CHEN D N. Initiation dynamics of condensed explosives [M]. Beijing: National Defense Industry Press, 1991: 109.
    [24]
    王成龙, 黄广炎, 冯顺山. 贫铀材料冲击破碎和能量释放后效研究 [C]//战斗部与毁伤技术学术交流会. 北京, 2017: 785–791.

    WANG C L, HUANG G Y, FENG S S. Research on impact crushing and energy release aftereffects of depleted uranium materials [C]// Symposium on Warheads and Damage Technology. Beijing, 2017: 785–791.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (117) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return