Turn off MathJax
Article Contents
LI Haifeng, MEN Jianbing, JIN Wen, LIU Xudong. J-C model of high-entropy alloy Ta-Hf-Nb-Zr system and its application test[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0069
Citation: LI Haifeng, MEN Jianbing, JIN Wen, LIU Xudong. J-C model of high-entropy alloy Ta-Hf-Nb-Zr system and its application test[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0069

J-C model of high-entropy alloy Ta-Hf-Nb-Zr system and its application test

doi: 10.11883/bzycj-2024-0069
  • Received Date: 2024-03-11
  • Rev Recd Date: 2024-07-25
  • Available Online: 2024-08-13
  • In relation to the application of high-entropy alloy systems containing high-density and high-calorific value elements in the liner of shaped charge warheads, the Ta-Hf-Nb-Zr high-entropy alloy system is investigated. The study employed an INSTRON material testing machine and a split Hopkinson pressure bar testing platform to explore the mechanical response of this high-entropy alloy across a wide range of strain rates from 10−3 to 103 s−1, temperatures ranging from 25 to 900 °C, and stress triaxiality values ranging from 0.33 to 0.89. Yield strength and failure strain data were obtained from static round bar tensile tests and dynamic compression tests conducted under these varying conditions. By using least squares fitting, the parameters of the Johnson-Cook (J-C) constitutive equation as well as the damage failure model parameters, are derived. Subsequently, a simulation model for explosively formed projectile (EFP) made from high-entropy alloys under explosive loading conditions was developed. Pulse X-ray tests of the EFP formation were performed, and numerical simulations of the EFP formation process are conducted using LS-DYNA software. The results show that at 117 μs, the high-entropy alloy EFP remains largely intact, with a length of 51.1 mm and a diameter of 12.27 mm. At 187 μs, three fractures are observed at the tail of the EFP, with the head length measuring 24.3 mm, the diameter at 12.27 mm, and the EFP speed recorded at 2496.3 m/s. The numerical simulations demonstrate that the EFP length, diameter, and velocity at these time instants match the test data with errors of less than 8.2%. Moreover, the fracture patterns observed experimentally align closely with those predicted by the simulations. This consistency indicates that the J-C model effectively predicts the formation characteristics of high-entropy alloy EFPs under explosive loading conditions, confirming its utility in accurately simulating the EFP formation process.
  • loading
  • [1]
    李天昕, 王书道, 卢一平, 等. 高熵合金材料研究进展与展望 [J]. 中国工程科学, 2023, 25(3): 170–181. DOI: 10.15302/J-SSCAE-2023.03.016.

    LI T X, WANG S D, LU Y P, et al. Research progress and prospect of high-entropy alloy materials [J]. Strategic Study of CAE, 2023, 25(3): 170–181. DOI: 10.15302/J-SSCAE-2023.03.016.
    [2]
    王先珍, 王一涵, 俞嘉彬, 等. 高熵合金性能特点与应用展望 [J]. 精密成形工程, 2022, 14(11): 73–80. DOI: 10.3969/j.issn.1674-6457.2022.11.008.

    WANG X Z, WANG Y H, YU J B, et al. A brief review about perspective and properties of high-entropy alloys [J]. Journal of Netshape Forming Engineering, 2022, 14(11): 73–80. DOI: 10.3969/j.issn.1674-6457.2022.11.008.
    [3]
    张周然. HfZrTiTax高熵合金含能结构材料的组织结构与力学性能研究 [D]. 长沙: 国防科学技术大学, 2017: 86–87. DOI: 10.27052/d.cnki.gzjgu.2017.000221.

    ZHANG Z R. Microstructure and mechanical properties of HfZrTiTax high-entropy alloys energetic structural materials [D]. Changsha: National University of Defense Technology, 2017: 86–87. DOI: 10.27052/d.cnki.gzjgu.2017.000221.
    [4]
    LIU X F, TIAN Z L, ZHANG X F, et al. “Self-sharpening” tungsten high-entropy alloy [J]. Acta Materialia, 2020, 186: 257–266. DOI: 10.1016/j.actamat.2020.01.005.
    [5]
    陈海华, 张先锋, 赵文杰, 等. W25Fe25Ni25Mo25高熵合金高速侵彻细观结构演化特性 [J]. 力学学报, 2022, 54(8): 2140–2151. DOI: 10.6052/0459-1879-22-128.

    CHEN H H, ZHANG X F, ZHAO W J, et al. Effect of microstructure on flow behavior during penetration of W25Fe25Ni25Mo25 high-entropy alloy projectile [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2140–2151. DOI: 10.6052/0459-1879-22-128.
    [6]
    鄢阿敏, 乔禹, 戴兰宏. 高熵合金药型罩射流成型与稳定性 [J]. 力学学报, 2022, 54(8): 2119–2130. DOI: 10.6052/0459-1879-22-274.

    YAN A M, QIAO Y, DAI L H. Formation and stability of shaped charge liner jet of CrMnFeCoNi high-entropy alloy [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2119–2130. DOI: 10.6052/0459-1879-22-274.
    [7]
    马田, 吕永柱, 张博, 等. TiZrNbVAl高熵合金弹体侵彻双层钢板可行性研究 [J]. 兵器装备工程学报, 2023, 44(11): 23–28. DOI: 10.11809/bqzbgcxb2023.11.003.

    MA T, LYU Y Z, ZHANG B, et al. Feasibility study on TiZrNbVAl high-entropy alloy projectile penetrating double layer steel plates [J]. Journal of Ordnance Equipment Engineering, 2023, 44(11): 23–28. DOI: 10.11809/bqzbgcxb2023.11.003.
    [8]
    马胜国, 王志华. CoCrFeNiAl x系高熵合金的动态力学性能和本构关系 [J]. 爆炸与冲击, 2021, 41(11): 111101. DOI: 10.11883/bzycj-2020-0293.

    MA S G, WANG Z H. Dynamic mechanical properties and constitutive relations of CoCrFeNiAl x high entropy alloys [J]. Explosion and Shock Waves, 2021, 41(11): 111101. DOI: 10.11883/bzycj-2020-0293.
    [9]
    LI Z, ZHAO S, DIAO H, et al. High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: remarkable resistance to shear failure [J]. Scientific Reports, 2017, 7(1): 42742. DOI: 10.1038/srep42742.
    [10]
    陈嘉琳, 李述涛, 陈叶青. 考虑晶体取向的Al0.3CoCrFeNi高熵合金动态力学性能研究 [J]. 爆炸与冲击, 2024, 44(3): 031401. DOI: 10.11883/bzycj-2023-0324.

    CHEN J L, LI S T, CHEN Y Q. A study on dynamic mechanical properties of Al0.3CoCrFeNi high-entropy alloy considering crystal orientation [J]. Explosion and Shock Waves, 2024, 44(3): 031401. DOI: 10.11883/bzycj-2023-0324.
    [11]
    蒋文灿, 程祥珍, 梁斌, 等. 一种组合药型罩聚能装药战斗部对含水复合结构毁伤的数值模拟及试验研究 [J]. 爆炸与冲击, 2022, 42(8): 083303. DOI: 10.11883/bzycj-2021-0389.

    JIANG W C, CHENG X Z, LIANG B, et al. Numerical simulation and experimental study on the damage of water partitioned structure by a shaped charge warhead with a combined charge liner [J]. Explosion and Shock Waves, 2022, 42(8): 083303. DOI: 10.11883/bzycj-2021-0389.
    [12]
    付恒, 蒋建伟, 王树有, 等. 爆炸成型弹丸药型罩用高密度合金选取准则 [J]. 兵工学报, 2022, 43(9): 2330–2338. DOI: 10.12382/bgxb.2021.0826.

    FU H, JIANG J W, WANG S Y, et al. High-density alloy selection criteria for liners of explosively formed projectiles [J]. Acta Armamentarii, 2022, 43(9): 2330–2338. DOI: 10.12382/bgxb.2021.0826.
    [13]
    门建兵, 卢易浩, 蒋建伟, 等. 杆式EFP用钽钨合金JC失效模型参数 [J]. 高压物理学报, 2020, 34(6): 065105. DOI: 10.11858/gywlxb.20200550.

    MEN J B, LU Y H, JIANG J W, et al. Johnson-cook failure model parameters of tantalum-tungsten alloy for rod-shaped EFP [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065105. DOI: 10.11858/gywlxb.20200550.
    [14]
    陈刚, 陈忠富, 徐伟芳, 等. 45钢的J-C损伤失效参量研究 [J]. 爆炸与冲击, 2007, 27(2): 131–135. DOI: 10.11883/1001-1455(2007)02-0131-05.

    CHEN G, CHEN Z F, XU W F, et al. Investigation on the J-C ductile fracture parameters of 45 steel [J]. Explosion and Shock Waves, 2007, 27(2): 131–135. DOI: 10.11883/1001-1455(2007)02-0131-05.
    [15]
    门建兵, 蒋建伟, 王树有. 爆炸冲击数值模拟技术基础 [M]. 北京: 北京理工大学出版社, 2015: 146–147.

    MEN J B, JIANG J W, WANG S Y. Foundation of numerical simulation for explosion and shock problems [M]. Beijing: Beijing Institute of Technology Press, 2015: 146–147.
    [16]
    JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [17]
    朱志鹏, 门建兵, 蒋建伟, 等. 大长径比钽爆炸成型弹丸控制研究 [J]. 兵工学报, 2018, 39(S1): 29–36. DOI: 10.3969/j.issn.1000-1093.2018.S1.005.

    ZHU Z P, MEN J B, JIANG J W, et al. Forming control of tantalum EFP with large aspect ratio [J]. Acta Armamentarii, 2018, 39(S1): 29–36. DOI: 10.3969/j.issn.1000-1093.2018.S1.005.
    [18]
    陈刚, 陈忠富, 陶俊林, 等. 45钢动态塑性本构参量与验证 [J]. 爆炸与冲击, 2005, 25(5): 451–456. DOI: 10.11883/1001-1455(2005)05-0451-06.

    CHEN G, CHEN Z F, TAO J L, et al. Investigation and validation on plastic constitutive parameters of 45 steel [J]. Explosion and Shock Waves, 2005, 25(5): 451–456. DOI: 10.11883/1001-1455(2005)05-0451-06.
    [19]
    彭嘉诚. 后效增强自旋式EFP技术研究 [D]. 北京: 北京理工大学, 2022: 98–99.

    PENG J C. Research on technologies of spin-up EFP with enhanced aftereffects [D]. Beijing: Beijing Institute of Technology, 2022: 98–99.
    [20]
    辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数手册 [M]. 北京: 机械工业出版社, 2019: 109.
    [21]
    徐恒威, 梁斌, 刘俊新, 等. 药型罩形位偏差对聚能装药射流成型及其破甲过程影响 [J]. 含能材料, 2023, 31(10): 1049–1058. DOI: 10.11943/CJEM2022292.

    XU H W, LIANG B, LIU J X, et al. Influence of shape and position deviation of liner on jet forming and penetration process of shaped charge [J]. Chinese Journal of Energetic Materials, 2023, 31(10): 1049–1058. DOI: 10.11943/CJEM2022292.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(8)

    Article Metrics

    Article views (56) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return