Citation: | XU Feng, JIANG Jianwei, WANG Shuyou, LI Mei, HAO Zehui. Response of CL-20-based high-detonation-velocity pressed explosive to drop-hammer impact[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0109 |
[1] |
彭翠枝, 赵春柳, 毛长勇, 等. 国外CL-20炸药技术发展分析 [J]. 火炸药学报, 2022, 45(3): 290–299. DOI: 10.14077/j.issn.1007-7812.202203003.
PENG C Z, ZHAO C L, MAO C Y, et al. Foreign development status of CL-20 explosive technology [J]. Chinese Journal of Explosives & Propellants, 2022, 45(3): 290–299. DOI: 10.14077/j.issn.1007-7812.202203003.
|
[2] |
PARAKHIN V V, SMIRNOV G A. Research progress on design, synthesis and performance of energetic polynitro hexaazaisowurtzitane derivatives: towards improved CL-20 analogues [J]. FirePhysChem, 2024, 4(1): 21–33. DOI: 10.1016/j.fpc.2023.05.006.
|
[3] |
BARI R, DENTON A A, FONDREN Z T, et al. Acceleration of decomposition of CL-20 explosive under nanoconfinement [J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(6): 2649–2655. DOI: 10.1007/s10973-019-09027-5.
|
[4] |
YANG L F, SHI X R, LI C Z, et al. Microfluidic assisted 90% loading CL-20 spherical particles: enhancing self-sustaining combustion performance [J]. Defence Technology, 2023, 22: 176–184. DOI: 10.1016/j.dt.2021.12.004.
|
[5] |
吴成成, 王正宏, 李世伟, 等. CL-20基压装炸药结构成型载体的设计及其应用 [J]. 火炸药学报, 2022, 45(3): 388–395. DOI: 10.14077/j.issn.1007-7812.202204020.
WU C C, WANG Z H, LI S W, et al. Design and application of CL-20-based pressed explosives structure forming carrier [J]. Chinese Journal of Explosives & Propellants, 2022, 45(3): 388–395. DOI: 10.14077/j.issn.1007-7812.202204020.
|
[6] |
刘正, 聂建新, 徐星, 等. 密闭空间内六硝基六氮杂异伍兹烷基复合炸药能量释放特性 [J]. 兵工学报, 2022, 43(3): 503–512. DOI: 10.12382/bgxb.2021.0163.
LIU Z, NIE J X, XU X, et al. Energy release characteristics of CL-20-based composite explosives in confined space [J]. Acta Armamentarii, 2022, 43(3): 503–512. DOI: 10.12382/bgxb.2021.0163.
|
[7] |
GAO H X, ZHANG Q H, SHREEVE J M. Fused heterocycle-based energetic materials (2012—2019) [J]. Journal of Materials Chemistry A, 2020, 8(8): 4193–4216. DOI: 10.1039/c9ta12704f.
|
[8] |
LI C Y, KONG S, LIAO D J, et al. Fabrication and characterization of mussel-inspired layer-by-layer assembled CL-20-based energetic films via micro-jet printing [J]. Defence Technology, 2022, 18(10): 1748–1759. DOI: 10.1016/j.dt.2021.12.001.
|
[9] |
阚润哲, 聂建新, 郭学永, 等. 不同铝氧比CL-20基含铝炸药深水爆炸能量输出特性 [J]. 兵工学报, 2022, 43(5): 1023–1031. DOI: 10.12382/bgxb.2021.0227.
KAN R Z, NIE J X, GUO X Y, et al. Energy output characteristics of CL-20-based aluminized explosives with different Al/o ratios during deep-water explosion [J]. Acta Armamentarii, 2022, 43(5): 1023–1031. DOI: 10.12382/bgxb.2021.0227.
|
[10] |
吕中杰, 高晨宇, 赵开元, 等. 铝质量分数对CL-20基炸药驱动筒壁能量输出结构影响 [J]. 北京理工大学学报, 2023, 43(1): 27–35. DOI: 10.15918/j.tbit1001-0645.2022.015.
LÜ Z J, GAO C Y, ZHAO K Y, et al. Influence of aluminum content on energy output structure of CL-20-based explosives driving cylinder wall [J]. Transactions of Beijing Institute of Technology, 2023, 43(1): 27–35. DOI: 10.15918/j.tbit1001-0645.2022.015.
|
[11] |
SONG S W, TIAN X L, WANG Y, et al. Theoretical insight into density and stability differences of RDX, HMX and CL-20 [J]. CrystEngComm, 2022, 24(8): 1537–1545. DOI: 10.1039/d1ce01577j.
|
[12] |
SHA Y, ZHANG X B. Reaction mechanism of hydrogen peroxide enhancing detonation performance in the host-guest structure of CL-20 by reactive molecular dynamics simulations [J]. Vacuum, 2023, 211: 111929. DOI: 10.1016/j.vacuum.2023.111929.
|
[13] |
MAO X X, JIANG L F, LI Y F, et al. Preparation of sub‐micron sized CL-20 and its mechanical and thermal properties [J]. Propellants, Explosives, Pyrotechnics, 2021, 46(1): 52–60. DOI: 10.1002/prep.202000137.
|
[14] |
GAO F B, JING J Q, CHENG W J, et al. Molecular dynamics simulation of bilayer core-shell structure of CL-20 surface-modified by polydopamine coated with polymer binder [J]. Materials Today Communications, 2023, 37: 107099. DOI: 10.1016/j.mtcomm.2023.107099.
|
[15] |
HE W J, LI Y N, BAO P, et al. Utilizing surface modification in coating technology to enhance the efficiency of CL-20 desensitization [J]. FirePhysChem, 2024, 4(1): 72–79. DOI: 10.1016/j.fpc.2023.10.002.
|
[16] |
ZHANG X P, CHEN S S, WU Y G, et al. A novel cocrystal composed of CL-20 and an energetic ionic salt [J]. Chemical Communications, 2018, 54(94): 13268–13270. DOI: 10.1039/c8cc06540c.
|
[17] |
LIU K, ZHANG G, LUAN J Y, et al. Crystal structure, spectrum character and explosive property of a new cocrystal CL-20/DNT [J]. Journal of Molecular Structure, 2016, 1110: 91–96. DOI: 10.1016/j.molstruc.2016.01.027.
|
[18] |
ANDERSON S R, DUBÉ P, KRAWIEC M, et al. Promising CL-20-based energetic material by cocrystallization [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(5): 783–788. DOI: 10.1002/prep.201600065.
|
[19] |
LIU N, DUAN B H, LU X M, et al. Preparation of CL-20/DNDAP cocrystals by a rapid and continuous spray drying method: an alternative to cocrystal formation [J]. CrystEngComm, 2018, 20(14): 2060–2067. DOI: 10.1039/C8CE00006A.
|
[20] |
王克强. 炸药破甲威力与爆轰参数之间定量关系的探讨 [J]. 火炸药学报, 1999, 18(2): 25–29. DOI: 10.3969/j.issn.1007-7812.1999.02.007.
WANG K Q. Studies on the quantitative relation between the penetration performance and explosive properties [J]. Chinese Journal of Explosives & Propellants, 1999, 18(2): 25–29. DOI: 10.3969/j.issn.1007-7812.1999.02.007.
|
[21] |
南宇翔. 高能炸药爆炸驱动金属能量输出规律研究 [D]. 北京: 北京理工大学, 2015: 109-112.
NAN Y X. Law of energy release for metal-driving by high-energy explosive [D]. Beijing: Beijing Institute of Technology, 2015: 109-112.
|
[22] |
王树有, 南宇翔, 蒋建伟, 等. 典型CL-20和HMX基压装炸药爆炸驱动特性对比 [J]. 含能材料, 2021, 29(4): 332–337. DOI: 10.11943/CJEM2020301.
WANG S Y, NAN Y X, JIANG J W, et al. Comparative experimental study on explosion driving performance of typical CL-20-and HMX-based pressed explosives [J]. Chinese Journal of Energetic Materials, 2021, 29(4): 332–337. DOI: 10.11943/CJEM2020301.
|
[23] |
谈乐斌, 张相炎, 管红根, 等. 火炮概论 [M]. 北京: 北京理工大学出版社, 2005: 124–124.
TAN L B, ZHANG X Y, GUAN H G, et al. Introduction to artillery [M]. Beijing: Beijing Institute of Technology Press, 2005: 124–124.
|
[24] |
皮铮迪. CL-20混合炸药冲击起爆特征及爆轰波成长规律研究 [D]. 北京: 北京理工大学, 2016.
PI Z D. Investigate the shock into the detonation characteristics and rules of CL-20-based explosives [D]. Beijing: Beijing Institute of Technology, 2016.
|
[25] |
皮铮迪, 陈朗, 刘丹阳, 等. CL-20基混合炸药的冲击起爆特征 [J]. 爆炸与冲击, 2017, 37(6): 915–923. DOI: 10.11883/1001-1455(2017)06-0915-09.
PI Z D, CHEN L, LIU D Y, et al. Shock initiation of CL-20 based explosives [J]. Explosion and Shock Waves, 2017, 37(6): 915–923. DOI: 10.11883/1001-1455(2017)06-0915-09.
|
[26] |
高家乐, 周霖, 苗飞超, 等. 过载环境下炸药装药点火过程的数值模拟 [J]. 火炸药学报, 2022, 45(3): 323–331. DOI: 10.14077/j.issn.1007-7812.202203031.
GAO J L, ZHOU L, MIAO F C, et al. Numerical simulation of ignition process of explosive charge in overload environment [J]. Chinese Journal of Explosives & Propellants, 2022, 45(3): 323–331. DOI: 10.14077/j.issn.1007-7812.202203031.
|
[27] |
周霖, 倪磊, 李东伟, 等. 炸药抗过载性能试验方法 [J]. 兵工学报, 2023, 44(6): 1722–1732. DOI: 10.12382/bgxb.2022.0074.
ZHOU L, NI L, LI D W, et al. Test method for anti-overload performance of explosives [J]. Acta Armamentarii, 2023, 44(6): 1722–1732. DOI: 10.12382/bgxb.2022.0074.
|
[28] |
王世英, 胡焕性. B炸药装药发射安全性落锤模拟加载实验研究 [J]. 爆炸与冲击, 2003, 23(3): 275–278. DOI: 10.11883/1001-1455(2003)03-0275-4.
WANG S Y, HU H X. Drop hammer simulation study on launch safety of composite B [J]. Explosion and Shock Waves, 2003, 23(3): 275–278. DOI: 10.11883/1001-1455(2003)03-0275-4.
|
[29] |
高立龙, 牛余雷, 王浩, 等. 典型炸药柱的400kg落锤撞击感度特性分析 [J]. 含能材料, 2011, 19(4): 428–431. DOI: 10.3969/j.issn.1006-9941.2011.04.017.
GAO L L, NIU Y L, WANG H, et al. Analysis of impact sensitivity characteristics for typical explosive cylinder [J]. Chinese Journal of Energetic Materials, 2011, 19(4): 428–431. DOI: 10.3969/j.issn.1006-9941.2011.04.017.
|
[30] |
许志峰, 屈可朋. 装药发射安全性模拟加载实验方法研究 [J]. 火工品, 2015, 37(6): 51–53. DOI: 10.3969/j.issn.1003-1480.2015.06.014.
XU Z F, QU K P. Study on experimental method of simulation loading for launch safety of charge [J]. Initiators & Pyrotechnics, 2015, 37(6): 51–53. DOI: 10.3969/j.issn.1003-1480.2015.06.014.
|
[31] |
黄正平, 张锦云, 张汉萍, 等. 后坐冲击模拟实验装置工作机理研究 [J]. 北京理工大学学报, 1994, 14(4): 371–377. DOI: 10.15918/j.tbit1001-0645.1994.04.008.
HUANG Z P, ZHANG J Y, ZHANG H P, et al. Working principles of a setback-shock simulator [J]. Journal of Beijing Institute of Technology, 1994, 14(4): 371–377. DOI: 10.15918/j.tbit1001-0645.1994.04.008.
|
[32] |
刘海营, 张景林, 王作山. 炸药撞击感度的研究综述 [J]. 山西化工, 2007, 27(6): 57–59. DOI: 10.16525/j.cnki.cn14-1109/tq.2007.06.025.
LIU H Y, ZHANG J L, WANG Z S. Study on the explosive impact sensitivity [J]. Shanxi Chemical Industry, 2007, 27(6): 57–59. DOI: 10.16525/j.cnki.cn14-1109/tq.2007.06.025.
|
[33] |
TURCOTTE R, VACHON M, KWOK Q S M, et al. Thermal study of HNIW (CL-20) [J]. Thermochimica Acta, 2005, 433(1/2): 105–115. DOI: 10.1016/j.tca.2005.02.021.
|
[34] |
范夕萍, 王霞, 刘子如, 等. 纳米Cu粉对HMX和RDX热分解的催化作用 [J]. 含能材料, 2005, 13(5): 284–287. DOI: 10.3969/j.issn.1006-9941.2005.05.003.
FAN X P, WANG X, LIU Z R, et al. Catalysis of nano Cu powder on the thermal decomposition of HMX and RDX [J]. Chinese Journal of Energetic Materials, 2005, 13(5): 284–287. DOI: 10.3969/j.issn.1006-9941.2005.05.003.
|