Citation: | JIAO Junjie, SHAN Feng, WANG Hancheng, QI Yanjie, PAN Xuchao, FANG Zhong, CHENG Yubo, HE Xiaolan, CI Shengjie, HE Yong. Determination of JWL equation of state based on the detonation product from underwater explosion[J]. Explosion And Shock Waves. doi: 10.11883/bzycj-2024-0203 |
[1] |
陈朗, 冯长根, 黄毅民. 含铝炸药圆筒试验及爆轰产物JWL状态方程研究 [J]. 火炸药学报, 2001, 24(3): 13–15. DOI: 10.3969/j.issn.1007-7812.2001.03.005.
CHEN L, FENG C G, HUANG Y M. The cylinder test and JWL equation of state detontion product of aluminized explosives [J]. Chinese Journal of Explosives & Propellants, 2001, 24(3): 13–15. DOI: 10.3969/j.issn.1007-7812.2001.03.005.
|
[2] |
裴红波, 钟斌, 李星瀚, 等. RDX基含铝炸药圆筒试验及状态方程研究 [J]. 火炸药学报, 2019, 42(4): 403–409. DOI: 10.14077/j.issn.1007-7812.2019.04.015.
PEI H B, ZHONG B, LI X H, et al. Study on the cylinder tests and equation of state in RDX based aluminized explosives [J]. Chinese Journal of Explosives & Propellants, 2019, 42(4): 403–409. DOI: 10.14077/j.issn.1007-7812.2019.04.015.
|
[3] |
沈飞, 王辉, 袁建飞, 等. RDX基含铝炸药不同尺寸的圆筒试验及数值模拟 [J]. 含能材料, 2013, 21(6): 777–780. DOI: 10.3969/j.issn.1006-9941.2013.06.017.
SHEN F, WANG H, YUAN J F, et al. Different diameter cylinder tests and numerical simulation of RDX based aluminized explosive [J]. Chinese Journal of Energetic Materials, 2013, 21(6): 777–780. DOI: 10.3969/j.issn.1006-9941.2013.06.017.
|
[4] |
韩勇, 黄辉, 黄毅民, 等. 含铝炸药圆筒试验与数值模拟 [J]. 火炸药学报, 2009, 32(4): 14–17. DOI: 10.3969/j.issn.1007-7812.2009.04.004.
HAN Y, HUANG H, HUANG Y M, et al. Cylinder test of aluminized explosives and its numerical simulation [J]. Chinese Journal of Explosives & Propellants, 2009, 32(4): 14–17. DOI: 10.3969/j.issn.1007-7812.2009.04.004.
|
[5] |
杨晨琛, 李晓杰, 闫鸿浩, 等. 爆轰产物状态方程的水下爆炸反演理论研究 [J]. 爆炸与冲击, 2019, 39(9): 092201. DOI: 10.11883/bzycj-2018-0210.
YANG C C, LI X J, YAN H H, et al. An inverse method for the equation of state of detonation products from underwater explosion tests [J]. Explosion and Shock Waves, 2019, 39(9): 092201. DOI: 10.11883/bzycj-2018-0210.
|
[6] |
HOLTON W C. The detonation pressures in explosives as measured by transmitted shocks in water: NAVORD Report 3968 [R]. White Oak: U. S. Naval Ordnance Laboratory, 1954.
|
[7] |
COOK M A, PACK D H, MCEWAN W S. Promotion of shock initiation of detonation by metallic surfaces [J]. Transactions of the Faraday Society, 1960, 56: 1028–1038. DOI: 10.1039/tf9605601028.
|
[8] |
RIGDON J K. Explosive performance: SANL-712-004 [R]. Amarillo: Mason and Hanger-Silas Mason Company Incorporated, 1969. DOI: 10.2172/532483.
|
[9] |
杨凯, 孔军利, 沈飞, 等. 水下滑移爆轰试验确定JWL状态方程参数 [J]. 火炸药学报, 2013, 36(3): 62–64. DOI: 10.3969/j.issn.1007-7812.2013.03.015.
YANG K, KONG J L, SHEN F, et al. Determining the parameters of JWL EOS by underwater sliding detonation test [J]. Chinese Journal of Explosives & Propellants, 2013, 36(3): 62–64. DOI: 10.3969/j.issn.1007-7812.2013.03.015.
|
[10] |
沈飞, 王辉, 袁建飞, 等. 含铝炸药水下滑移爆轰实验研究 [J]. 实验力学, 2014, 29(5): 641–646. DOI: 10.7520/1001-4888-13-202.
SHEN F, WANG H, YUAN J F, et al. Experimental study of underwater sliding detonation of aluminized explosives [J]. Journal of Experimental Mechanics, 2014, 29(5): 641–646. DOI: 10.7520/1001-4888-13-202.
|
[11] |
魏贤凤, 龙新平, 韩勇. PBX-01炸药水中爆轰产物状态方程研究 [J]. 爆炸与冲击, 2015, 35(4): 599–602. DOI: 10.11883/1001-1455(2015)04-0599-04.
WEI X F, LONG X P, HAN Y. Studies on the state equation of the underwater detonation products for PBX-01 explosive [J]. Explosion and Shock Waves, 2015, 35(4): 599–602. DOI: 10.11883/1001-1455(2015)04-0599-04.
|
[12] |
李科斌, 董新龙, 李晓杰, 等. 水下爆炸实验法在工业炸药JWL状态方程测定中的应用研究 [J]. 兵工学报, 2020, 41(3): 488–494. DOI: 10.3969/j.issn.1000-1093.2020.03.009.
LI K B, DONG X L, LI X J, et al. Research on parameters determination of JWL EOS for commercial explosives based on underwater explosion test [J]. Acta Armamentarii, 2020, 41(3): 488–494. DOI: 10.3969/j.issn.1000-1093.2020.03.009.
|
[13] |
林谋金, 马宏昊, 沈兆武, 等. 铝纤维对黑索今水下爆炸性能的影响 [J]. 爆炸与冲击, 2014, 34(3): 379–384. DOI: 10.11883/1001-1455(2014)03-0379-06.
LIN M J, MA H H, SHEN Z W, et al. Effect of aluminum fiber on underwater detonation performance of RDX [J]. Explosion and Shock Waves, 2014, 34(3): 379–384. DOI: 10.11883/1001-1455(2014)03-0379-06.
|
[14] |
胡宏伟, 王建灵, 徐洪涛, 等. RDX基含铝炸药水中爆炸近场冲击波特性 [J]. 火炸药学报, 2009, 32(2): 1–5. DOI: 10.3969/j.issn.1007-7812.2009.02.001.
HU H W, WANG J L, XU H T, et al. Underwater shock wave characteristics of RDX-based aluminized explosives in near-field range [J]. Chinese Journal of Explosives & Propellants, 2009, 32(2): 1–5. DOI: 10.3969/j.issn.1007-7812.2009.02.001.
|
[15] |
ZHANG J X, WANG S S, JIA X Y, et al. An improved Kirkwood-Bethe model for calculating near-field shockwave propagation of underwater explosions [J]. AIP Advances, 2021, 11(3): 035123. DOI: 10.1063/5.0040224.
|
[16] |
沈飞, 王辉, 袁建飞, 等. 铝含量对RDX基含铝炸药驱动能力的影响 [J]. 火炸药学报, 2013, 36(3): 50–53. DOI: 10.3969/j.issn.1007-7812.2013.03.012.
SHEN F, WANG H, YUAN J F, et al. Influence of Al content on the driving ability of RDX-based aluminized explosives [J]. Chinese Journal of Explosives & Propellants, 2013, 36(3): 50–53. DOI: 10.3969/j.issn.1007-7812.2013.03.012.
|
[17] |
DOBRATZ B M, CRAWFORD P C. LLNL explosives handbook-properties of chemical explosives and explosive simulants: UCRL--52997-Chg. 2 [R]. Livermore: Lawrence Livermore National Laboratory, 1981.
|
[18] |
SHAN F, HE Y, JIAO J J, et al. Experimental and theoretical analysis of detonation products state on bubble dynamics and energy distribution in underwater explosion [J]. Journal of Applied Physics, 2021, 130(17): 174701. DOI: 10.1063/5.0058644.
|
[19] |
WANG H C, HE Y, SHAN F, et al. Roles of underwater explosion bubble accelerating expansion cut-off state in bubble dynamics and energy output [J]. Journal of Applied Physics, 2022, 132(19): 194704. DOI: 10.1063/5.0110446.
|
[1] | CHAO Hongxiao, HU Hao, LEI Qiang, GAO Rui, YAO Guoqing. Experimental study on shock wave from dynamic explosion of a warhead based on seismic wave triggering[J]. Explosion And Shock Waves, 2021, 41(8): 083201. doi: 10.11883/bzycj-2020-0196 |
[2] | LI Yi, MIAO Chunhe, XU Songlin, ZHANG Jinyong, WANG Pengfei. Wave propagation in density-graded viscoelastic material[J]. Explosion And Shock Waves, 2021, 41(1): 013202. doi: 10.11883/bzycj-2020-0313 |
[3] | LU Qiang, WANG Zhanjiang, ZHANG Jingsen, DING Yang, LI Jin, GUO Zhiyun. Comparative studies on characteristics of elastic wave radiated from the tamped explosion in loess and rock-like sandy soil[J]. Explosion And Shock Waves, 2019, 39(5): 052202. doi: 10.11883/bzycj-2018-0025 |
[4] | LU Qiang, WANG Zhanjiang, ZHU Yurong, DING Yang, GUO Zhiyun. Construction of motion and deformation field in granite under tamped explosion using wave propagation coefficient[J]. Explosion And Shock Waves, 2019, 39(8): 083103. doi: 10.11883/bzycj-2019-0140 |
[5] | YANG Zhaowei, LU Wenbo, GAO Qidong, CHEN Ming, HU Haoran, YAN Peng, WANG Gaohui. A S-wave phase picking method for blasting seismic waves and its application in engineering[J]. Explosion And Shock Waves, 2018, 38(1): 28-36. doi: 10.11883/bzycj-2017-0178 |
[6] | Lu Qiang, Wang Zhanjiang, Ding Yang, Liu Xiaoxin, Guo Zhiyun, Wu Yujiao. Characteristics of frequency response for linear viscoelastic spherical divergent stress waves[J]. Explosion And Shock Waves, 2017, 37(6): 1023-1030. doi: 10.11883/1001-1455(2017)06-1023-08 |
[7] | Li Xuezheng, Wang Minchao. Particle velocity models on small yields underground explosions[J]. Explosion And Shock Waves, 2017, 37(5): 899-905. doi: 10.11883/1001-1455(2017)05-0899-07 |
[8] | Hao Chun-yue, Zheng Zhong. Main characteristics for three explosion events based on explosion waves[J]. Explosion And Shock Waves, 2014, 34(6): 730-735. doi: 10.11883/1001-1455(2014)06-0730-06 |
[9] | Lu Qiang, Wang Zhan-jiang, Wang Li-li, Lai Hua-wei, Yang Li-ming, . Analysis of linear visco-elastic spherical waves based on ZWT constitutive equation[J]. Explosion And Shock Waves, 2013, 33(5): 463-470. doi: 10.11883/1001-1455(2013)05-0463-08 |
[10] | Lai Hua-wei, Wang Zhan-jiang, Yang Li-ming, Wang Li-li. Characteristics analyses of linear viscoelastic spherical waves[J]. Explosion And Shock Waves, 2013, 33(1): 1-10. doi: 10.11883/1001-1455(2013)01-0001-10 |
[11] | XIAO Wei-guo, WANG Xiao-jun, ZHU Hao-feng, JIN Ping. Experimentalstudyonseismiccouplingeffectsofundergroundexplosions indifferentmaterial[J]. Explosion And Shock Waves, 2012, 32(3): 267-272. doi: 10.11883/1001-1455(2012)03-0267-06 |
[12] | ZHONG Ming-shou, LONG Yuan, XIE Quan-min, JI Chong, LIU Hao-quan. Effectsofnon-couplingchargecoefficientsonexplosionseismic waveenergyincarbonaterocks[J]. Explosion And Shock Waves, 2011, 31(6): 612-618. doi: 10.11883/1001-1455(2011)06-0612-07 |
[13] | LAO Jun, XIAO Wei-guo, WANG Xiao-jun, ZHAO Kai. Numerical simulation on underground cavity-decoupling explosion[J]. Explosion And Shock Waves, 2009, 29(5): 535-541. doi: 10.11883/1001-1455(2009)05-0535-07 |
[14] | ZHU Hao-feng, JIN Ping, XIAO Wei-guo. Numerical modeling of seismic source function for underground explosion in hard rock[J]. Explosion And Shock Waves, 2009, 29(6): 648-653. doi: 10.11883/1001-1455(2009)06-0648-06 |
[15] | TANG Ting, WANG Ming-yang, ZHAO Yue-tang. Transformation of boundary conditions of cavity expansion in an elastic medium[J]. Explosion And Shock Waves, 2009, 29(2): 189-193. doi: 10.11883/1001-1455(2009)02-0189-05 |
[16] | ZHOU Zhong, WANG Xiao-jun, XIAO Wei-guo, ZHAO Kai. Study on the main characteristics of underground explosion seismic source function in granite[J]. Explosion And Shock Waves, 2007, 27(1): 18-25. doi: 10.11883/1001-1455(2007)01-0018-08 |
[17] | GUO Sheng-bing, PAN Yue-feng, GAO Pei-zheng, WANG Ming-yang, QIAN Qi-hu. Numerical simulation of explosion seismic waves[J]. Explosion And Shock Waves, 2005, 25(4): 335-340. doi: 10.11883/1001-1455(2005)04-0335-06 |
[18] | ZHONG Fang-qing, LI Shan-lin, SUN Heng-zhong, ZHOU Jian-qing, ZOU Zu-jun, WANG Wen-xue. Seismic source function for an underground explosion[J]. Explosion And Shock Waves, 2005, 25(2): 176-179. doi: 10.11883/1001-1455(2005)02-0176-04 |
[19] | ZHONG Fang-qing, LI Shan-lin, SUN Heng-zhong, ZHOU Jian-qing, WANG Wen-xue, ZOU Zu-jun. Study on seismic coupling of underground explosion in rock[J]. Explosion And Shock Waves, 2005, 25(2): 180-182. doi: 10.11883/1001-1455(2005)02-0180-03 |
1. | 周岸峰,李道奎,周仕明,周旋,崔达. 爆炸地冲击载荷计算方法综述. 工程爆破. 2023(05): 38-46+56 . ![]() | |
2. | 曾援,李剑,马明星,贺斌,刘瑞. 基于自适应极化滤波的地下浅层P/S波解耦方法. 电子测量技术. 2023(23): 181-187 . ![]() |