Citation: | ZHANG Shizhong, LI Jinping, KANG Yue, HU Jianqiao, CHEN Hong. Generation of near-field blast wave by means of shock tube[J]. Explosion And Shock Waves, 2024, 44(12): 121434. doi: 10.11883/bzycj-2024-0204 |
[1] |
ELDER G A, CRISTIAN A. Blast-related mild traumatic brain injury: mechanisms of injury and impact on clinical care [J]. Mount Sinai Journal of Medicine: A Journal of Translational and Personalized Medicine, 2009, 76(2): 111–118. DOI: 10.1002/msj.20098.
|
[2] |
TURNER R C, NASER Z J, LOGSDON A F, et al. Modeling clinically relevant blast parameters based on scaling principles produces functional & histological deficits in rats [J]. Experimental Neurology, 2013, 248: 520–529. DOI: 10.1016/j.expneurol.2013.07.008.
|
[3] |
RISDALL J E, MENON D K. Traumatic brain injury [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366(1562): 241–250. DOI: 10.1098/rstb.2010.0230.
|
[4] |
HERNANDEZ A, TAN C F, PLATTNER F, et al. Exposure to mild blast forces induces neuropathological effects, neurophysiological deficits and biochemical changes [J]. Molecular Brain, 2018, 11(1): 64. DOI: 10.1186/s13041-018-0408-1.
|
[5] |
NING Y L, ZHOU Y G. Shock tubes and blast injury modeling [J]. Chinese Journal of Traumatology, 2015, 18(4): 187–193. DOI: 10.1016/j.cjtee.2015.04.005.
|
[6] |
BAKER W E. Explosions in air [M]. Austin: University of Texas Press, 1973.
|
[7] |
CLEMEDSON C J, CRIBORN C O. A detonation chamber for physiological blast research [J]. Journal of Aviation Medicine, 1955, 26(5): 373–381.
|
[8] |
FILLER W S. Propagation of shock waves in a hydrodynamic conical shock tube [J]. Physics of Fluids, 1964, 7(5): 664–667. DOI: 10.1063/1.1711266.
|
[9] |
STEWART J B, PECORA C. Explosively driven air blast in a conical shock tube [J]. Review of Scientific Instruments, 2015, 86(3): 035108. DOI: 10.1063/1.4914898.
|
[10] |
COURTNEY A C, ANDRUSIV L P, COURTNEY M W. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects [J]. Review of Scientific Instruments, 2012, 83(4): 045111. DOI: 10.1063/1.3702803.
|
[11] |
COURTNEY M W, COURTNEY A C. Note: a table-top blast driven shock tube [J]. Review of Scientific Instruments, 2010, 81(12): 126103. DOI: 10.1063/1.3518970.
|
[12] |
CELANDER H, CLEMEDSON C J, ERICSSON U A, et al. The use of a compressed air operated shock tube for physiological blast research [J]. Acta Physiologica Scandinavica, 1955, 33(1): 6–13. DOI: 10.1111/j.1748-1716.1955.tb01188.x.
|
[13] |
CULBERTSON D W. Description and performance of a conical shock tube nuclear air blast simulator [C]// Proceedings of the Seventh International Shock Tube Symposium. Toronto: University of Toronto Press, 1970: 396–409. DOI: 10.3138/9781487595876-024.
|
[14] |
OPALKA K O, MARK A. The BRL-Q1D code: a tool for the numerical simulation of flows in shock tubes with variable cross-sectional areas: AD-A139631 [R]. Aberdeen: U. S. Army Ballistic Research Laboratory, 1986.
|
[15] |
YU H R, GU J H, LI Z F, et al. Generation of blast wave by means of the normal shock tube [C]//Proceedings of the International Symposium on Shock Waves. Sendai, Japan, 1992: 897–900.
|
[16] |
王正国, 孙立英, 杨志焕, 等. 系列生物激波管的研制与应用 [J]. 爆炸与冲击, 1993, 13(1): 77–83. DOI: 10.11883/1001-1455(1993)01-0077-7.
WANG Z G, SUN L Y, YANG Z H, et al. The design production and application of a series of bio-shock tubes [J]. Explosion and Shock Waves, 1993, 13(1): 77–83. DOI: 10.11883/1001-1455(1993)01-0077-7.
|
[17] |
KIRK D R, FAURE J M, GUTIERREZ H, et al. Generation and analysis of blast waves from a compressed air-driven shock tube [C]//38th Fluid Dynamics Conference and Exhibit. Seattle: AIAA, 2008: 4777. DOI: 10.2514/6.2008-3847.
|
[18] |
KLEINSCHMIT N N. A shock tube technique for blast wave simulation and studies of flow structure interactions in shock tube blast experiments [D]. Lincoln: The University of Nebraska, 2011.
|
[19] |
NGUYEN T T N, WILGEROTH J M, PROUD W G. Controlling blast wave generation in a shock tube for biological applications [J]. Journal of Physics: Conference Series, 2014, 500: 142025. DOI: 10.1088/1742-6596/500/14/142025.
|
[20] |
ANDREOTTI R, COLOMBO M, GUARDONE A, et al. Performance of a shock tube facility for impact response of structures [J]. International Journal of Non-Linear Mechanics, 2015, 72: 53–66. DOI: 10.1016/j.ijnonlinmec.2015.02.010.
|
[21] |
LI X D, HU Z M, JIANG Z L. Numerical investigation of the effects of shock tube geometry on the propagation of an ideal blast wave profile [J]. Shock Waves, 2017, 27(5): 771–779. DOI: 10.1007/s00193-017-0716-x.
|
[22] |
FRIEDLANDER F G. The diffraction of sound pulses Ⅰ: diffraction by a semi-infinite plane [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1946, 186(1006): 322–344. DOI: 10.1098/rspa.1946.0046.
|
[23] |
LUO K, WANG Q, LI J W, et al. Numerical modeling of a high-enthalpy shock tunnel driven by gaseous detonation [J]. Aerospace Science and Technology, 2020, 104: 105958. DOI: 10.1016/j.ast.2020.105958.
|
[1] | LI Ming, WANG Kehui, ZOU Huihui, DUAN Jian, GU Renhong, DAI Xianghui, YANG Hui. Crater morphology of a projectile penetrating a thick concrete target[J]. Explosion And Shock Waves, 2022, 42(8): 083302. doi: 10.11883/bzycj-2021-0294 |
[2] | WANG Xiaodong, YU Yilei, JIANG Zhaoxiu, MA Minghui, GAO Guangfa. Dynamic fragmentation and failure of the hard core of a 12.7 mm API projectile against SiC/6061T6Al composite armor with various impact velocities[J]. Explosion And Shock Waves, 2022, 42(2): 023303. doi: 10.11883/bzycj-2021-0181 |
[3] | WANG Xiaodong, WANG Jiangbo, XU Lizhi, DU Zhonghua, GAO Guangfa. Experimental study on penetration of non-circular cross-section long-rod projectiles into semi-infinite metal target[J]. Explosion And Shock Waves, 2021, 41(3): 031403. doi: 10.11883/bzycj-2020-0335 |
[4] | LIN Kunfu, ZHANG Xianfeng, CHEN Haihua, XIONG Wei, LIU Chuang, ZHANG Quanxiao. Penetration behaviors of Hf-based amorphous alloy jacketed rods[J]. Explosion And Shock Waves, 2021, 41(2): 023301. doi: 10.11883/bzycj-2020-0181 |
[5] | WANG Jie, WU Haijun, ZHOU Jiequn, SHI Xiaohai, LI Jinzhu, PI Aiguo, HUANG Fenglei. Experiment research and crater analysis of long rodhypervelocity penetration into concrete[J]. Explosion And Shock Waves, 2020, 40(9): 093301. doi: 10.11883/bzycj-2019-0439 |
[6] | WU Yishun, CHEN Xiaowei. A numerical simulation method for long rods penetrating into ceramic targets[J]. Explosion And Shock Waves, 2020, 40(5): 053301. doi: 10.11883/bzycj-2019-0291 |
[7] | MA Liying, LI Xiangdong, ZHOU Lanwei, LAN Xiaoying, GONG Xiaoze, YAO Zhijun. Study on wall damage of vessel in high-speed fragment impact liquid-filled vessel[J]. Explosion And Shock Waves, 2019, 39(2): 023302. doi: 10.11883/bzycj-2018-0009 |
[8] | Tan Mengting, Zhang Xianfeng, Ge Xiankun, Liu Chuang, Xiong Wei. Theoretical model of interface defeat/penetration transition velocity of ceramic armor impacted by long-rod projectile[J]. Explosion And Shock Waves, 2017, 37(6): 1093-1100. doi: 10.11883/1001-1455(2017)06-1093-08 |
[9] | Zhong Qiang, Hou Hailiang, Zhu Xi, Li Dian. Numerical analysis of penetration resistance of ceramic/fluid cabin composite structure[J]. Explosion And Shock Waves, 2017, 37(3): 510-519. doi: 10.11883/1001-1455(2017)03-0510-10 |
[10] | Li Ruiyu, Sun Yuxin, Zhou Ling, Sun Qiran, Zhao Yayun, Feng Jiangtuo. Influence of heat transfer on long-rod projectiles penetrating into ceramic targets[J]. Explosion And Shock Waves, 2017, 37(2): 332-338. doi: 10.11883/1001-1455(2017)02-0332-07 |
[11] | Wang Qifan, Shi Shaoqing, Wang Zheng, Sun Jianhu, Chu Zhaojun. Experimental study on penetration-resistance characteristics of honeycomb shelter[J]. Explosion And Shock Waves, 2016, 36(2): 253-258. doi: 10.11883/1001-1455(2016)02-0253-06 |
[12] | Zhang Jie, Su Shao-qing, Zheng Yu, Wang Xiao-jun. Application of modified SPH method to numerical simulation of ceramic spallation[J]. Explosion And Shock Waves, 2013, 33(4): 401-407. doi: 10.11883/1001-1455(2013)04-0401-07 |
[13] | Xiong Liang-ping, Huang Dao-ye, Wang Feng-ying. Protection effectiveness of a new explosive reactive armor against penetration of long-rod projectiles with small yaw angles[J]. Explosion And Shock Waves, 2013, 33(1): 108-112. doi: 10.11883/1001-1455(2013)01-0108-05 |
[14] | WANG Jin-tao, YU Wen-li, WANG Tao, LUO Yong-feng, WANG Shao-long. Smoothedparticlehydrodynamicsalgorithmappliedinnumerical simulationoflayeredmetaltargetsimpactedbylong-rodprojectile[J]. Explosion And Shock Waves, 2011, 31(5): 533-569. doi: 10.11883/1001-1455(2011)05-0533-07 |
[15] | LI Ji-cheng, CHEN Xiao-wei. Theoreticalanalysisontheinterfacedefeatofalongrodpenetration[J]. Explosion And Shock Waves, 2011, 31(2): 141-147. doi: 10.11883/1001-1455(2011)02-0141-07 |
[16] | HE Xiang, XU Xiang-yun, SUN Gui-juan, SHEN Jun, YANG Jian-chao, JIN Dong-liang. Experimentalinvestigationonprojectileshigh-velocitypenetration intoconcretetarget[J]. Explosion And Shock Waves, 2010, 30(1): 1-6. doi: 10.11883/1001-1455(2010)01-0001-06 |
[17] | JIANG Dong, LI Yong-chi, YU Shao-juan, DENG Shi-chun. PenetrationofconfinedAD95ceramiccompositetargets bytungstenlongrods[J]. Explosion And Shock Waves, 2010, 30(1): 91-95. doi: 10.11883/1001-1455(2010)01-0091-05 |
[18] | ZHANG Xian-feng, LI Yong-chi. Constraining and toughening effects on anti-penetration properties of alumina ceramic targets to shaped charge jets[J]. Explosion And Shock Waves, 2009, 29(2): 149-154. doi: 10.11883/1001-1455(2009)02-0149-06 |
[19] | LIANG Long-he, WANG Zheng, CAO Ju-zhen. Damaging effect of concrete by penetration and explosion of a long-rod projectile[J]. Explosion And Shock Waves, 2008, 28(5): 415-420. doi: 10.11883/1001-1455(2008)05-0415-06 |
[20] | CHEN Xiao-wei, ZHANG Fang-ju, YANG Shi-quan, XIE Ruo-ze, GAO Hai-ying, XU Ai-ming, JIN Jian-ming, QU Ming. Mechanics of structural design of EPW(Ⅲ): Investigations on the reduced-scale tests[J]. Explosion And Shock Waves, 2006, 26(2): 105-214. doi: 10.11883/1001-1455(2006)02-0105-10 |