Citation: | LI Guibing, LI Wenbo, WANG Guosheng, QIN Lingyun, CAI Zhihua. Analysis of occupant spinal injury behavior and risk induced by under-body blast impacts[J]. Explosion And Shock Waves, 2024, 44(12): 121422. doi: 10.11883/bzycj-2024-0211 |
[1] |
BELMONT JR P J, GOODMAN G P, ZACCHILLI M, et al. Incidence and epidemiology of combat injuries sustained during “the surge” portion of operation Iraqi freedom by a U. S. army brigade combat team [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2010, 68(1): 204–210. DOI: 10.1097/TA.0b013e3181bdcf95.
|
[2] |
COMSTOCK S, PANNELL D, TALBOT M, et al. Spinal injuries after improvised explosive device incidents: implications for tactical combat casualty care [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2011, 71(5): S413–S417. DOI: 10.1097/TA.0b013e318232e575.
|
[3] |
SCHOENFELD A J, GOODMAN G P, BELMONT JR P J. Characterization of combat-related spinal injuries sustained by a US army brigade combat team during operation Iraqi freedom [J]. The Spine Journal, 2012, 12(9): 771–776. DOI: 10.1016/j.spinee.2010.05.004.
|
[4] |
YOGANANDAN N, MOORE J, ARUN M W J, et al. Dynamic responses of intact post mortem human surrogates from inferior-to-superior loading at the pelvis [J]. Stapp Car Crash Journal, 2014, 58: 123–143. DOI: 10.4271/2014-22-0005.
|
[5] |
YOGANANDAN N, HUMM J, BAISDEN J, et al. Temporal corridors of forces and moments, and injuries to pelvis-lumbar spine in vertical impact simulating underbody blast [J]. Journal of Biomechanics, 2023, 150: 111490. DOI: 10.1016/j.jbiomech.2023.111490.
|
[6] |
BAILEY A M, CHRISTOPHER J J, BROZOSKI F, et al. Post mortem human surrogate injury response of the pelvis and lower extremities to simulated underbody blast [J]. Annals of Biomedical Engineering, 2015, 43(8): 1907–1917. DOI: 10.1007/s10439-014-1211-5.
|
[7] |
PIETSCH H, DANELSON K, CAVANAUGH J, et al. A comparison of fracture response in female and male lumbar spine in simulated under body blast component tests [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2024, 150: 106303. DOI: 10.1016/j.jmbbm.2023.106303.
|
[8] |
RUPP J D, ZASECK L, MILLER C S, et al. Whole body PMHS response in injurious experimental accelerative loading events [J]. Annals of Biomedical Engineering, 2021, 49(11): 3031–3045. DOI: 10.1007/s10439-021-02803-1.
|
[9] |
OTT K A, DEMETROPOULOS C K, LUONGO M E, et al. Evaluation of the whole body spine response to sub-injurious vertical loading [J]. Annals of Biomedical Engineering, 2021, 49(11): 3099–3117. DOI: 10.1007/s10439-020-02656-0.
|
[10] |
尹宁, 王洪亮, 张进成, 等. 垂向冲击下穿戴装备对乘员损伤影响研究 [J]. 爆炸与冲击, 2021, 41(8): 085101. DOI: 10.11883/bzycj-2020-0229.
YIN N, WANG H L, ZHANG J C, et al. Research on the effect of wearing equipment on occupant injury under vertical impact [J]. Explosion and Shock Waves, 2021, 41(8): 085101. DOI: 10.11883/bzycj-2020-0229.
|
[11] |
罗鸣, 周云波, 张进成, 等. 爆炸冲击作用时间差对盆骨和腰椎的损伤研究 [J]. 爆炸与冲击, 2021, 41(1): 015902. DOI: 10.11883/bzycj-2020-0059.
LUO M, ZHOU Y B, ZHANG J C, et al. Research on time interval of explosion impact on pelvis and lumbar spine injury [J]. Explosion and Shock Waves, 2021, 41(1): 015902. DOI: 10.11883/bzycj-2020-0059.
|
[12] |
SOMASUNDARAM K, ZHANG L, SHERMAN D, et al. Evaluating thoracolumbar spine response during simulated underbody blast impact using a total human body finite element model [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 100: 103398. DOI: 10.1016/j.jmbbm.2019.103398.
|
[13] |
WEAVER C M, STITZEL J D. Pelvic response of a total human body finite element model during simulated under body blast impacts [C]//Proceedings of IRCOBI Conference 2015. Lyon, France, 2015.
|
[14] |
牛坤, 焦猛, 莫富灏, 等. 底部爆炸冲击下装甲车乘员下肢损伤行为与防护研究 [J]. 兵器装备工程学报, 2022, 43(12): 1–7. DOI: 10.11809/bqzbgcxb2022.12.001.
NIU K, JIAO M, MO F H, et al. Research on injury behaviors and protection of armored vehicle occupant lower limbs in under-body blast impacts [J]. Journal of Ordnance Equipment Engineering, 2022, 43(12): 1–7. DOI: 10.11809/bqzbgcxb2022.12.001.
|
[15] |
LUO W, NIU K, MO F H, et al. Pelvis and thoracolumbar spine response in simulated under-body blast impacts and protective seat cushion design [J]. Acta of Bioengineering and Biomechanics, 2024, 26(1): 143–151. DOI: 10.37190/ABB-02423-2024-02.
|
[16] |
石秉良, 王显会, 张云, 等. 军用车辆底部防护研究与发展综述 [J]. 兵工学报, 2016, 37(10): 1902–1914. DOI: 10.3969/j.issn.1000-1093.2016.10.018.
SHI B L, WANG X H, ZHANG Y, et al. An overview of development and research on bottom protection capability of military vehicle [J]. Acta Armamentarii, 2016, 37(10): 1902–1914. DOI: 10.3969/j.issn.1000-1093.2016.10.018.
|
[17] |
汪国胜, 雷强顺, 曹宇, 等. 军用车辆座椅减振抗爆技术研究现状与发展趋势: 军用车辆乘载员减振抗爆座椅设计技术研究系列一 [J]. 兵工学报, 2022, 43(7): 1718–1732. DOI: 10.12382/bgxb.2021.0402.
WANG G S, LEI Q S, CAO Y, et al. Current status and trends in shock-absorbing and anti-explosion technologies for military vehicle seats research on design technology of shock absorbing and anti-explosion for military vehicle seats: series Ⅰ [J]. Acta Armamentarii, 2022, 43(7): 1718–1732. DOI: 10.12382/bgxb.2021.0402.
|
[18] |
IWAMOTO M, NAKAHIRA Y, KIMPARA H. Development and validation of the Total Human Model for Safety (THUMS) toward further understanding of occupant injury mechanisms in precrash and during crash [J]. Traffic Injury Prevention, 2015, 16(S1): S36–S48. DOI: 10.1080/15389588.2015.1015000.
|
[19] |
KITAGAWA Y, HAYASHI S, YAMADA K, et al. Occupant kinematics in simulated autonomous driving vehicle collisions: influence of seating position, direction and angle [J]. Stapp Car Crash Journal, 2017, 61: 101–155. DOI: 10.4271/2017-22-0005.
|
[20] |
SOMASUNDARAM K, SHERMAN D, BEGEMAN P, et al. Mechanisms and timing of injury to the thoracic, lumbar and sacral spine in simulated underbody blast PMHS impact tests [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 116: 104271. DOI: 10.1016/j.jmbbm.2020.104271.
|
[21] |
ZIMMERMANN E A, SCHAIBLE E, GLUDOVATZ B, et al. Intrinsic mechanical behavior of femoral cortical bone in young, osteoporotic and bisphosphonate-treated individuals in low- and high energy fracture conditions [J]. Scientific Reports, 2016, 6: 21072. DOI: 10.1038/srep21072.
|