Citation: | ZHANG Jiarui, DU Zhibo, LIU Zhanli, ZHUANG Zhuo. Research progress on mechanism of craniocerebral trauma based on relationship between head acceleration and brain injury[J]. Explosion And Shock Waves, 2024, 44(12): 121411. doi: 10.11883/bzycj-2024-0221 |
[1] |
HANLON E M, BIR C A. Real-time head acceleration measurement in girls’ youth soccer [J]. Medicine and Science in Sports and Exercise, 2012, 44(6): 1102–1108. DOI: 10.1249/MSS.0b013e3182444d7d.
|
[2] |
HOLBOURN A H S. Mechanics of head injuries [J]. The Lancet, 1943, 242(6267): 438–441. DOI: 10.1016/S0140-6736(00)87453-X.
|
[3] |
FORERO RUEDA M A, CUI L, GILCHRIST M D. Finite element modelling of equestrian helmet impacts exposes the need to address rotational kinematics in future helmet designs [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2011, 14(12): 1021–1031. DOI: 10.1080/10255842.2010.504922.
|
[4] |
ROWSON S, DUMA S M, BECKWITH J G, et al. Rotational head kinematics in football impacts: an injury risk function for concussion [J]. Annals of Biomedical Engineering, 2012, 40(1): 1–13. DOI: 10.1007/s10439-011-0392-4.
|
[5] |
HARDY W N, KHALIL T B, KING A I. Literature review of head injury biomechanics [J]. International Journal of Impact Engineering, 1994, 15(4): 561–586. DOI: 10.1016/0734-743X(94)80034-7.
|
[6] |
JONES M. Biomechanics of primary traumatic head injury [M]// WHITWELL H, MILROY C, DU PLESSIS D. Forensic Neuropathology. 2nd ed. Boca Raton: CRC Press, 2021: 45-54. DOI: 10.1201/9781003158035.
|
[7] |
ONO K, KIKUCHI A, NAKAMURA M, et al. Human head tolerance to sagittal impact reliable estimation deduced from experimental head injury using subhuman primates and human cadaver skulls [J]. SAE Transactions, 1980: 3837-3866. DOI: 10.4271/801303.
|
[8] |
NISHIMOTO T, MURAKAMI S. Relation between diffuse axonal injury and internal head structures on blunt impact [J]. Journal of Biomechanical Engineering, 1998, 120(1): 140–147. DOI: 10.1115/1.2834294.
|
[9] |
ANDERSON R W G, BROWN C J, BLUMBERGS P C, et al. Impact mechanics and axonal injury in a sheep model [J]. Journal of Neurotrauma, 2003, 20(10): 961–974. DOI: 10.1089/089771503770195812.
|
[10] |
BAILES J E, PETRAGLIA A L, OMALU B I, et al. Role of subconcussion in repetitive mild traumatic brain injury: a review [J].Journal of Neurosurgery, 2013, 119(5): 1235–1245. DOI: 10.3171/2013.7.JNS121822.
|
[11] |
HUME P A, THEADOM A, LEWIS G N, et al. A comparison of cognitive function in former rugby union players compared with former non-contact-sport players and the impact of concussion history [J]. Sports Medicine, 2017, 47(6): 1209–1220. DOI: 10.1007/s40279-016-0608-8.
|
[12] |
THUNNAN D J, BRANCHE C M, SNIEZEK J E. The epidemiology of sports-related traumatic brain injuries in the United States: recent developments [J]. Journal of Head Trauma Rehabilitation, 1998, 13(2): 1–8. DOI: 10.1097/00001199-199804000-00003.
|
[13] |
CUNNINGHAM J, BROGLIO S, WILSON F. Influence of playing rugby on long-term brain health following retirement: a systematic review and narrative synthesis [J]. BMJ Open Sport and Exercise Medicine, 2018, 4(1): e000356. DOI: 10.1136/bmjsem-2018-000356.
|
[14] |
FITZPATRICK A C, NAYLOR A S, MYLER P, et al. A three-year epidemiological prospective cohort study of rugby league match injuries from the European Super League [J]. Journal of Science and Medicine in Sport, 2018, 21(2): 160–165. DOI: 10.1016/j.jsams.2017.08.012.
|
[15] |
SOICA A, TARULESCU S. Impact phase in frontal vehicle-pedestrian collisions [J]. International Journal of Automotive Technology, 2016, 17(3): 387–397. DOI: 10.1007/s12239-016-0040-y.
|
[16] |
GILSON L, RABET L, IMAD A, et al. Experimental and numerical assessment of non-penetrating impacts on a composite protection and ballistic gelatine [J]. International Journal of Impact Engineering, 2020, 136: 103417. DOI: 10.1016/j.ijimpeng.2019.103417.
|
[17] |
LIU H, KANG J Y, CHEN J, et al. Intracranial pressure response to non-penetrating ballistic impact: an experimental study using a pig physical head model and live pigs [J]. International Journal of Medical Sciences, 2012, 9(8): 655–664. DOI: 10.7150/ijms.5004.
|
[18] |
FREITAS C J, BIGGER R P, SCOTT N, et al. Composite materials dynamic back face deflection characteristics during ballistic impact [J]. Journal of Composite Materials, 2014, 48(12): 1475–1486. DOI: 10.1177/0021998313487934.
|
[19] |
OUKARA A, NSIAMPA N, ROBBE C, et al. Assessment of non-lethal projectile head impacts [J]. Human Factors and Mechanical Engineering for Defense and Safety, 2017, 1(1): 3. DOI: 10.1007/s41314-016-0001-2.
|
[20] |
National Research Council, Division on Engineering and Physical Sciences, Board on Army Science and Technology, et al. Review of Department of Defense test protocols for combat helmets [R]. Washington: The National Academies Press, 2014. DOI: 10.17226/18621.
|
[21] |
GURDJIAN E S, GURDJIAN E S. Cerebral contusions: re-evaluation of the mechanism of their development [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 1976, 16(1): 35–51. DOI: 10.1097/00005373-197601000-00005.
|
[22] |
GURDJIAN E S, HODGSON V R, THOMAS L M, et al. Significance of relative movements of scalp, skull, and intracranial contents during impact injury of the head [J]. Journal of Neurosurgery, 1968, 29(1): 70–72. DOI: 10.3171/jns.1968.29.1.0070.
|
[23] |
KING A I, YANG K H, ZHANG L, et al. Is head injury caused by linear or angular acceleration? [C]//Proceedings of the International Research Conference on the Biomechanics of Impacts. Lisbon, Portugal: IRCOBI, 2003: 1–12.
|
[24] |
GENNARELLI T A, THIBAULT L E. Biomechanics of acute subdural hematoma [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 1982, 22(8): 680–686. DOI: 10.1097/00005373-198208000-00005.
|
[25] |
KLEIVEN S, PELOSO P M, HOLST H. The epidemiology of head injuries in Sweden from 1987 to 2000 [J]. Injury Control and Safety Promotion, 2003, 10(3): 173–180. DOI: 10.1076/icsp.10.3.173.14552.
|
[26] |
KLEIVEN S. Why most traumatic brain injuries are not caused by linear acceleration but skull fractures are [J]. Frontiers in Bioengineering and Biotechnology, 2013, 1: 15. DOI: 10.3389/fbioe.2013.00015.
|
[27] |
MCCUEN E, SVALDI D, BREEDLOVE K, et al. Collegiate women’s soccer players suffer greater cumulative head impacts than their high school counterparts [J]. Journal of Biomechanics, 2015, 48(13): 3720–3723. DOI: 10.1016/j.jbiomech.2015.08.003.
|
[28] |
CACCESE J B, LAMOND L C, BUCKLEY T A, et al. Reducing purposeful headers from goal kicks and punts may reduce cumulative exposure to head acceleration [J]. Research in Sports Medicine, 2016, 24(4): 407–415. DOI: 10.1080/15438627.2016.1230549.
|
[29] |
REYNOLDS B B, PATRIE J, HENRY E J, et al. Comparative analysis of head impact in contact and collision sports [J]. Journal of Neurotrauma, 2017, 34(1): 38–49. DOI: 10.1089/neu.2015.4308.
|
[30] |
LAMOND L C, CACCESE J B, BUCKLEY T A, et al. Linear acceleration in direct head contact across impact type, player position, and playing scenario in collegiate women’s soccer players [J]. Journal of Athletic Training, 2018, 53(2): 115–121. DOI: 10.4085/1062-6050-90-17.
|
[31] |
NEVINS D, HILDENBRAND K, KENSRUD J, et al. Laboratory and field evaluation of a small form factor head impact sensor in un-helmeted play [J]. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2018, 232(3): 242–254. DOI: 10.1177/1754337117739458.
|
[32] |
CHRISMAN S P D, EBEL B E, STEIN E, et al. Head impact exposure in youth soccer and variation by age and sex [J]. Clinical Journal of Sport Medicine, 2019, 29(1): 3–10. DOI: 10.1097/JSM.0000000000000497.
|
[33] |
HARRISS A, JOHNSON A M, WALTON D M, et al. Head impact magnitudes that occur from purposeful soccer heading depend on the game scenario and head impact location [J]. Musculoskeletal Science and Practice, 2019, 40: 53–57. DOI: 10.1016/j.msksp.2019.01.009.
|
[34] |
MYER G D, FOSS K B, THOMAS S, et al. Altered brain microstructure in association with repetitive subconcussive head impacts and the potential protective effect of jugular vein compression: a longitudinal study of female soccer athletes [J]. British Journal of Sports Medicine, 2019, 53(24): 1539–1551. DOI: 10.1136/bjsports-2018-099571.
|
[35] |
RICH A M, FILBEN T M, MILLER L E, et al. Development, validation and pilot field deployment of a custom mouthpiece for head impact measurement [J]. Annals of Biomedical Engineering, 2019, 47(10): 2109–2121. DOI: 10.1007/s10439-019-02313-1.
|
[36] |
TOLEA B, RADU A I, BELES H, et al. Influence of the geometric parameters of the vehicle frontal profile on the pedestrian’s head accelerations in case of accidents [J]. International Journal of Automotive Technology, 2018, 19(1): 85–98. DOI: 10.1007/s12239-018-0009-0.
|
[37] |
NAUNHEIM R S, BAYLY P V, STANDEVEN J, et al. Linear and angular head accelerations during heading of a soccer ball [J]. Medicine & Science in Sports & Exercise, 2003, 35(8): 1406–1412. DOI: 10.1249/01.MSS.0000078933.84527.AE.
|
[38] |
JONES C M, AUSTIN K, AUGUSTUS S N, et al. An instrumented mouthguard for real-time measurement of head kinematics under a large range of sport specific accelerations [J]. Sensors, 2023, 23(16): 7068. DOI: 10.3390/s23167068.
|
[39] |
LIU Y Z, DOMEL A G, YOUSEFSANI S A, et al. Validation and comparison of instrumented mouthguards for measuring head kinematics and assessing brain deformation in football impacts [J]. Annals of Biomedical Engineering, 2020, 48(11): 2580–2598. DOI: 10.1007/s10439-020-02629-3.
|
[40] |
O’CONNOR K L, ROWSON S, DUMA S M, et al. Head-impact-measurement devices: a systematic review [J]. Journal of Athletic Training, 2017, 52(3): 206–227. DOI: 10.4085/1062-6050.52.2.05.
|
[41] |
REYNOLDS B B, PATRIE J, HENRY E J, et al. Practice type effects on head impact in collegiate football [J]. Journal of Neurosurgery, 2016, 124(2): 501–510. DOI: 10.3171/2015.5.JNS15573.
|
[42] |
HORROCKS C L. Blast injuries: biophysics, pathophysiology and management principles [J]. BMJ Military Health, 2001, 147(1): 28–40. DOI: 10.1136/jramc-147-01-03.
|
[43] |
OWENS B D, KRAGH JR J F, WENKE J C, et al. Combat wounds in operation Iraqi freedom and operation enduring freedom [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2008, 64(2): 295–299. DOI: 10.1097/TA.0b013e318163b875.
|
[44] |
Defense and Veterans Brain Injury Center. DoD worldwide numbers for TBI [R]. Defense and Veterans Brain Injury Center, 2018.
|
[45] |
CHAMPION H R, HOLCOMB J B, YOUNG L A. Injuries from explosions: physics, biophysics, pathology, and required research focus [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2009, 66(5): 1468–1477. DOI: 10.1097/TA.0b013e3181a27e7f.
|
[46] |
WOOD G W, PANZER M B, SHRIDHARANI J K, et al. Attenuation of blast pressure behind ballistic protective vests [J]. Injury Prevention, 2013, 19(1): 19–25. DOI: 10.1136/injuryprev-2011-040277.
|
[47] |
YOUNG L, RULE G T, BOCCHIERI R T, et al. When physics meets biology: low and high-velocity penetration, blunt impact, and blast injuries to the brain [J]. Frontiers in Neurology, 2015, 6: 89. DOI: 10.3389/fneur.2015.00089.
|
[48] |
GULLOTTI D M, BEAMER M, PANZER M B, et al. Significant head accelerations can influence immediate neurological impairments in a murine model of blast-induced traumatic brain injury [J]. Journal of Biomechanical Engineering, 2014, 136(9): 091004. DOI: 10.1115/1.4027873.
|
[49] |
SARVGHAD-MOGHADDAM H, REZAEI A, ZIEJEWSKI M, et al. Correlative analysis of head kinematics and brain’s tissue response: a computational approach toward understanding the mechanisms of blast TBI [J]. Shock Waves, 2017, 27(6): 919–927. DOI: 10.1007/s00193-017-0749-1.
|
[50] |
MAO H J, UNNIKRISHNAN G, RAKESH V, et al. Untangling the effect of head acceleration on brain responses to blast waves [J]. Journal of Biomechanical Engineering, 2015, 137(12): 124502. DOI: 10.1115/1.4031765.
|
[51] |
LOCKHART P, CRONIN D, WILLIAMS K, et al. Investigation of head response to blast loading [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2011, 70(2): E29–E36. DOI: 10.1097/TA.0b013e3181de3f4b.
|
[52] |
SIEGMUND G P, KING D J, LAWRENCE J M, et al. Head/neck kinematic response of human subjects in low-speed rear-end collisions [C]//Proceedings of the 41st Stapp Car Crash Conference. Orlando: SAE, 1997: 3877–3905.
|
[53] |
DIONNE J P, LEVINE J, MAKRIS A. Acceleration-based methodology to assess the blast mitigation performance of explosive ordnance disposal helmets [J]. Shock Waves, 2018, 28(1): 5–18. DOI: 10.1007/s00193-017-0737-5.
|
[54] |
GANPULE S, ALAI A, PLOUGONVEN E, et al. Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches [J]. Biomechanics and Modeling in Mechanobiology, 2013, 12(3): 511–531. DOI: 10.1007/s10237-012-0421-8.
|
[55] |
SIEGMUND G P, SANDERSON D J, INGLIS J T. Gradation of neck muscle responses and head/neck kinematics to acceleration and speed change in rear-end collisions [C]//48th Stapp Car Crash Conference. Vancouver: SAE, 2004. DOI: 10.4271/2004-22-0018.
|
[56] |
ONO K, KANEOKA K, WITTEK A, et al. Cervical injury mechanism based on the analysis of human cervical vertebral motion and head-neck-torso kinematics during low speed rear impacts [C]//Proceedings of the 1997 41st Stapp Car Crash Conference. Lake Buena Vista: SAE, 1997: 3859-3876.
|
[57] |
ESCARCEGA J D, KNUTSEN A K, ALSHAREEF A A, et al. Comparison of deformation patterns excited in the human brain in vivo by harmonic and impulsive skull motion [J]. Journal of Biomechanical Engineering, 2023, 145(8): 081006. DOI: 10.1115/1.4062809.
|
[58] |
BUDDAY S, SOMMER G, BIRKL C, et al. Mechanical characterization of human brain tissue [J]. Acta Biomaterialia, 2017, 48: 319–340. DOI: 10.1016/j.actbio.2016.10.036.
|
[59] |
BUDDAY S, NAY R, DE ROOIJ R, et al. Mechanical properties of gray and white matter brain tissue by indentation [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 46: 318–330. DOI: 10.1016/j.jmbbm.2015.02.024.
|
[60] |
KYRIACOU S K, MOHAMED A, MILLER K, et al. Brain mechanics for neurosurgery: modeling issues [J]. Biomechanics and Modeling in Mechanobiology, 2002, 1(2): 151–164. DOI: 10.1007/s10237-002-0013-0.
|
[61] |
BUDDAY S, STEINMANN P, KUHL E. Physical biology of human brain development [J]. Frontiers in Cellular Neuroscience, 2015, 9: 257. DOI: 10.3389/fncel.2015.00257.
|
[62] |
FRANCESCHINI G, BIGONI D, REGITNIG P, et al. Brain tissue deforms similarly to filled elastomers and follows consolidation theory [J]. Journal of the Mechanics and Physics of Solids, 2006, 54(12): 2592–2620. DOI: 10.1016/j.jmps.2006.05.004.
|
[63] |
WARD C C, THOMPSON R B. The development of a detailed finite element brain model [C]//19th Stapp Car Crash Conference. SAE, 1975: 3238–3252. DOI: 10.4271/751163.
|
[64] |
HOSEY R. A homeomorphic finite element model of the human head and neck [J]. Finite Elements in Biomechanics, 1982.
|
[65] |
NICOLLE S, LOUNIS M, WILLINGER R. Shear properties of brain tissue over a frequency range relevant for automotive impact situations: new experimental results [C]//48th Stapp Car Crash Conference. Strasbourg: SAE, 2004. DOI: 10.4271/2004-22-0011.
|
[66] |
PETERS G W M, MEULMAN J H, SAUREN A A H J. The applicability of the time/temperature superposition principle to brain tissue [J]. Biorheology, 1997, 34(2): 127–138. DOI: 10.1016/S0006-355X(97)00009-7.
|
[67] |
KLEIVEN S, HARDY W N. Correlation of an FE model of the human head with local brain motion-consequences for injury prediction [C]//46th Stapp Car Crash Conference. SAE, 2002. DOI: 10.4271/2002-22-0007.
|
[68] |
HORGAN T J, GILCHRIST M D. The creation of three-dimensional finite element models for simulating head impact biomechanics [J]. International Journal of Crashworthiness, 2003, 8(4): 353–366. DOI: 10.1533/ijcr.2003.0243.
|
[69] |
GHAJARI M, HELLYER P J, SHARP D J. Computational modelling of traumatic brain injury predicts the location of chronic traumatic encephalopathy pathology [J]. Brain, 2017, 140(2): 333–343. DOI: 10.1093/brain/aww317.
|
[70] |
WITTEK A, MILLER K, KIKINIS R, et al. Patient-specific model of brain deformation: application to medical image registration [J]. Journal of Biomechanics, 2007, 40(4): 919–929. DOI: 10.1016/j.jbiomech.2006.02.021.
|
[71] |
YANG S C, TANG J S, NIE B B, et al. Assessment of brain injury characterization and influence of modeling approaches [J]. Scientific Reports, 2022, 12(1): 13597. DOI: 10.1038/s41598-022-16713-2.
|
[72] |
CHENG L Y, RIFAI S, KHATUA T, et al. Finite element analysis of diffuse axonal injury [C]//International Congress and Exposition. SAE, 1990. DOI: 10.4271/900547.
|
[73] |
DIMASI F, TONG P, MARCUS J H, et al. Simulated head impacts with upper interior structures using rigid and anatomic brain models [M]//OÑATE E, PERIAUX J, SAMUELSSON A. The Finite Element Method in the 1990’s: A Book Dedicated to O. C. Zienkiewicz. Berlin: Springer, 1991: 333–345. DOI: 10.1007/978-3-662-10326-5_34.
|
[74] |
KUIJPERS A H W M, CLAESSENS M H A, SAUREN A A H J. The influence of different boundary conditions on the response of the head to impact: a two-dimensional finite element study [J]. Journal of Neurotrauma, 1995, 12(4): 715–724. DOI: 10.1089/neu.1995.12.715.
|
[75] |
NAHUM A M, SMITH R, WARD C C. Intracranial pressure dynamics during head impact [C]//21st Stapp Car Crash Conference. San Diego: SAE, 1977. DOI: 10.4271/770922.
|
[76] |
CLAESSENS M H A, SAUREN A A H J, WISMANS J S H M. Modeling of the human head under impact conditions: a parametric study [C]//41st Stapp Car Crash Conference. Orlando: SAE, 1997: 3829–3848. DOI: 10.4271/973338.
|
[77] |
KIMPARA H, NAKAHIRA Y, IWAMOTO M, et al. Head injury prediction methods based on 6 degree of freedom head acceleration measurements during impact [J]. International Journal of Automotive Engineering, 2011, 2(2): 13–19. DOI: 10.20485/jsaeijae.2.2_13.
|
[78] |
MAO H J, ZHANG L Y, JIANG B H, et al. Development of a finite element human head model partially validated with thirty five experimental cases [J]. Journal of Biomechanical Engineering, 2013, 135(11): 111002. DOI: 10.1115/1.4025101.
|
[79] |
MILLER L E, URBAN J E, STITZEL J D. Development and validation of an atlas-based finite element brain model [J]. Biomechanics and Modeling in Mechanobiology, 2016, 15(5): 1201–1214. DOI: 10.1007/s10237-015-0754-1.
|
[80] |
LI X G. Subject-specific head model generation by mesh morphing: a personalization framework and its applications [J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 706566. DOI: 10.3389/fbioe.2021.706566.
|
[81] |
ZHOU Z, LI X G, KLEIVEN S. Fluid-structure interaction simulation of the brain-skull interface for acute subdural haematoma prediction [J]. Biomechanics and Modeling in Mechanobiology, 2019, 18(1): 155–173. DOI: 10.1007/s10237-018-1074-z.
|
[82] |
BÉKÉSY G V. Vibration of the head in a sound field and its role in hearing by bone conduction [J]. The Journal of the Acoustical Society of America, 1948, 20(6): 749–760. DOI: 10.1121/1.1906433.
|
[83] |
FRANKE E K. Response of the human skull to mechanical vibrations [J]. The Journal of the Acoustical Society of America, 1956, 28(6): 1277–1284. DOI: 10.1121/1.1908622.
|
[84] |
FONVILLE T R, SCAROLA S J, HAMMI Y, et al. Resonant frequencies of a human brain, skull, and head [M]//PRABHU R, HORSTEMEYER M. Multiscale Biomechanical Modeling of the Brain. Amsterdam: Elsevier, 2022: 239–254. DOI: 10.1016/B978-0-12-818144-7.00006-2.
|
[85] |
LAKSARI K, KURT M, BABAEE H, et al. Mechanistic insights into human brain impact dynamics through modal analysis [J]. Physical Review Letters, 2018, 120(13): 138101. DOI: 10.1103/PhysRevLett.120.138101.
|
[86] |
LJUNG C. A model for brain deformation due to rotation of the skull [J]. Journal of Biomechanics, 1975, 8(5): 263–274. DOI: 10.1016/0021-9290(75)90078-0.
|
[87] |
BAYLY P V, MASSOUROS P G, CHRISTOFOROU E, et al. Magnetic resonance measurement of transient shear wave propagation in a viscoelastic gel cylinder [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5): 2036–2049. DOI: 10.1016/j.jmps.2007.10.012.
|
[88] |
MARGULIES S S, THIBAULT L E. An analytical model of traumatic diffuse brain injury [J]. Journal of Biomechanical Engineering, 1989, 111(3): 241–249. DOI: 10.1115/1.3168373.
|
[89] |
MASSOUROS P G, BAYLY P V, GENIN G M. Strain localization in an oscillating Maxwell viscoelastic cylinder [J]. International Journal of Solids and Structures, 2014, 51(2): 305–313. DOI: 10.1016/j.ijsolstr.2013.09.022.
|
[90] |
MASSOUROS P G, GENIN G M. The steady-state response of a Maxwell viscoelastic cylinder to sinusoidal oscillation of its boundary [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008, 464(2089): 207–221. DOI: 10.1098/rspa.2007.0081.
|
[91] |
CHRISTENSEN R M, GOTTENBERG W G. The dynamic response of a solid, viscoelastic sphere to translational and rotational excitation [J]. Journal of Applied Mechanics, 1964, 31(2): 273–278. DOI: 10.1115/1.3629597.
|
[92] |
COTTER C S, SMOLARKIEWICZ P K, SZCZYRBA I N. A viscoelastic fluid model for brain injuries [J]. International Journal for Numerical Methods in Fluids, 2002, 40(1/2): 303–311. DOI: 10.1002/fld.287.
|
[93] |
WAN Y, FANG W Q, CARLSEN R W, et al. A finite rotation, small strain 2D elastic head model, with applications in mild traumatic brain injury [J]. Journal of the Mechanics and Physics of Solids, 2023, 179: 105362. DOI: 10.1016/j.jmps.2023.105362.
|
[94] |
GABLER L F, CRANDALL J R, PANZER M B. Development of a second-order system for rapid estimation of maximum brain strain [J]. Annals of Biomedical Engineering, 2019, 47(9): 1971–1981. DOI: 10.1007/s10439-018-02179-9.
|
[95] |
MCBIRNEY S, HOCH E. Toward a unified multiscale computational model of the human body’s immediate responses to blast-related trauma: proceedings and expert findings from a U. S. department of defense international state-of-the-science meeting [J]. Rand Health Quarterly, 2023, 10(4): 11.
|
[96] |
MONTANINO A, LI X G, ZHOU Z, et al. Subject-specific multiscale analysis of concussion: from macroscopic loads to molecular-level damage [J]. Brain Multiphysics, 2021, 2: 100027. DOI: 10.1016/j.brain.2021.100027.
|
[97] |
LIU Y K, CHANDRA K B, VON ROSENBERG D U. Angular acceleration of viscoelastic (Kelvin) material in a rigid spherical shell: a rotational head injury model [J]. Journal of Biomechanics, 1975, 8(5): 285–292. DOI: 10.1016/0021-9290(75)90080-9.
|
[98] |
HOSSEINI-FARID M, AMIRI-TEHRANI-ZADEH M S, RAMZANPOUR M, et al. The strain rates in the brain, brainstem, dura, and skull under dynamic loadings [J]. Mathematical and Computational Applications, 2020, 25(2): 21. DOI: 10.3390/mca25020021.
|
[99] |
CARLSEN R W, FAWZI A L, WAN Y, et al. A quantitative relationship between rotational head kinematics and brain tissue strain from a 2-D parametric finite element analysis [J]. Brain Multiphysics, 2021, 2: 100024. DOI: 10.1016/j.brain.2021.100024.
|
[100] |
WU S J, ZHAO W, GHAZI K, et al. Convolutional neural network for efficient estimation of regional brain strains [J]. Scientific Reports, 2019, 9(1): 17326. DOI: 10.1038/s41598-019-53551-1.
|
[101] |
WU S J, ZHAO W, JI S B. Real-time dynamic simulation for highly accurate spatiotemporal brain deformation from impact [J].Computer Methods in Applied Mechanics and Engineering, 2022, 394: 114913. DOI: 10.1016/j.cma.2022.114913.
|
[102] |
ZHAN X H, LIU Y Z, RAYMOND S J, et al. Rapid estimation of entire brain strain using deep learning models [J]. IEEE Transactions on Biomedical Engineering, 2021, 68(11): 3424–3434. DOI: 10.1109/TBME.2021.3073380.
|
[103] |
ZHAN X H, LI Y H, LIU Y Z, et al. Machine-learning-based head impact subtyping based on the spectral densities of the measurable head kinematics [J]. Journal of Sport and Health Science, 2023, 12(5): 619–629. DOI: 10.1016/j.jshs.2023.03.003.
|
[104] |
ZHAN X H, LIU Y Z, CECCHI N J, et al. AI-based denoising of head impact kinematics measurements with convolutional neural network for traumatic brain injury prediction [J]. IEEE Transactions on Biomedical Engineering, 2024, 71(9): 2759–2770. DOI: 10.1109/TBME.2024.3392537.
|