Citation: | XIANG Shuyi, XUE Songbo, DU Zhibo, ZHAO Yang, WANG Xinghao, TIAN Xu, GAO Zhiqiang, FENG Guodong, FEI Zhou, ZHUANG Zhuo, LIU Zhanli. Experimental study on the law of rupture of pig eardrum based on free-field explosion[J]. Explosion And Shock Waves, 2024, 44(12): 121431. doi: 10.11883/bzycj-2024-0255 |
[1] |
GAN R Z, NAKMALI D, JI X D, et al. Mechanical damage of tympanic membrane in relation to impulse pressure waveform:a study in chinchillas [J]. Hearing Research, 2016, 340: 25–34. DOI: 10.1016/j.heares.2016.01.004.
|
[2] |
GAN R Z, LECKNESS K, NAKMALI D, et al. Biomechanical measurement and modeling of human eardrum injury in relation to blast wave direction [J]. Military Medicine, 2018, 183(S1): 245–251. DOI: 10.1093/milmed/usx149.
|
[3] |
GAN R Z, LECKNESS K, SMITH K, et al. Characterization of protection mechanisms to blast overpressure for personal hearing protection devices: biomechanical measurement and computational modeling [J]. Military Medicine, 2019, 184(S1): 251–260. DOI: 10.1093/milmed/usy299.
|
[4] |
LECKNESS K, NAKMALI D, GAN R Z. Computational modeling of blast wave transmission through human ear [J]. Military Medicine, 2018, 183(S1): 262–268. DOI: 10.1093/milmed/usx226.
|
[5] |
BROWN M A, JI X D, GAN R Z. 3D finite element modeling of blast wave transmission from the external ear to cochlea [J]. Annals of Biomedical Engineering, 2021, 49(2): 757–768. DOI: 10.1007/s10439-020-02612-y.
|
[6] |
BROWN M A, BRADSHAW J J, GAN R Z. Three-dimensional finite element modeling of blast wave transmission from the external ear to a spiral cochlea [J]. Journal of Biomechanical Engineering, 2022, 144(1): 014503. DOI: 10.1115/1.4051925.
|
[7] |
BRADSHAW J J, BROWN M A, JIANG S Y, et al. 3D finite element model of human ear with 3-chamber spiral cochlea for blast wave transmission from the ear canal to cochlea [J]. Annals of Biomedical Engineering, 2023, 51(5): 1106–1118. DOI: 10.1007/s10439-023-03200-6.
|
[8] |
JIANG S Y, SMITH K, GAN R Z. Dual-laser measurement and finite element modeling of human tympanic membrane motion under blast exposure [J]. Hearing Research, 2019, 378: 43–52. DOI: 10.1016/j.heares.2018.12.003.
|
[9] |
JIANG S Y, DAI C K, GAN R Z. Dual-laser measurement of human stapes footplate motion under blast exposure [J]. Hearing Research, 2021, 403: 108177. DOI: 10.1016/j.heares.2021.108177.
|
[10] |
BIEN A G, JIANG S Y, GAN R Z. Real-time measurement of stapes motion and intracochlear pressure during blast exposure [J]. Hearing Research, 2023, 429: 108702. DOI: 10.1016/j.heares.2023.108702.
|
[11] |
GAN R Z, JIANG S Y. Surface motion changes of tympanic membrane damaged by blast waves [J]. Journal of Biomechanical Engineering, 2019, 141(9): 091009. DOI: 10.1115/1.4044052.
|
[12] |
LUO H Y, DAI C K, GAN R Z, et al. Measurement of Young’s modulus of human tympanic membrane at high strain rates [J]. Journal of Biomechanical Engineering, 2009, 131(6): 064501. DOI: 10.1115/1.3118770.
|
[13] |
LUO H Y, JIANG S Y, NAKMALI D U, et al. Mechanical properties of a human eardrum at high strain rates after exposure to blast waves [J]. Journal of Dynamic Behavior of Materials, 2016, 2(1): 59–73. DOI: 10.1007/s40870-015-0041-3.
|
[14] |
ENGLES W G, WANG X L, GAN R Z. Dynamic properties of human tympanic membrane after exposure to blast waves [J]. Annals of Biomedical Engineering, 2017, 45(10): 2383–2394. DOI: 10.1007/s10439-017-1870-0.
|
[15] |
LIANG J F, LUO H Y, YOKELL Z, et al. Characterization of the nonlinear elastic behavior of chinchilla tympanic membrane using micro-fringe projection [J]. Hearing Research, 2016, 339: 1–11. DOI: 10.1016/j.heares.2016.05.012.
|
[16] |
LIANG J F, YOKELL Z A, NAKMAILI D U, et al. The effect of blast overpressure on the mechanical properties of a chinchilla tympanic membrane [J]. Hearing Research, 2017, 354: 48–55. DOI: 10.1016/j.heares.2017.08.003.
|
[17] |
LIANG J F, SMITH K D, GAN R Z, et al. The effect of blast overpressure on the mechanical properties of the human tympanic membrane [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 100: 103368. DOI: 10.1016/j.jmbbm.2019.07.026.
|
[18] |
CHEN T, SMITH K, JIANG S Y, et al. Progressive hearing damage after exposure to repeated low-intensity blasts in chinchillas [J]. Hearing Research, 2019, 378: 33–42. DOI: 10.1016/j.heares.2019.01.010.
|
[19] |
SMITH K D, CHEN T, GAN R Z. Hearing damage induced by blast overpressure at mild TBI level in a chinchilla model [J]. Military Medicine, 2020, 185(S1): 248–255. DOI: 10.1093/milmed/usz309.
|
[20] |
JIANG S Y, GANNON A N, SMITH K D, et al. Prevention of blast-induced auditory injury using 3D printed helmet and hearing protection device: a preliminary study on biomechanical modeling and animal [J]. Military Medicine, 2021, 186(S1): 537–545. DOI: 10.1093/milmed/usaa317.
|
[21] |
SHAO N N, JIANG S Y, YOUNGER D, et al. Central and peripheral auditory abnormalities in chinchilla animal model of blast-injury [J]. Hearing Research, 2021, 407: 108273. DOI: 10.1016/j.heares.2021.108273.
|
[22] |
DEWEY J M. The shape of the blast wave: studies of the Friedlander equation [C]//Proceedings of the 21st International Symposium on Military Aspects of Blast and Shock. 2010: 1–9.
|
[23] |
FRIEDLANDER F G. The diffraction of sound pulses Ⅰ: diffraction by a semi-infinite plane [J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1946, 186(1006): 322–344. DOI: 10.1098/rspa.1946.0046.
|
[24] |
IYOHO A E, HO K, CHAN P. The development of a tympanic membrane model and probabilistic dose-response risk assessment of rupture because of blast [J]. Military Medicine, 2020, 185(S1): 234–242. DOI: 10.1093/milmed/usz215.
|
[25] |
YOUNG R W. On the energy transported with a sound pulse [J]. The Journal of the Acoustical Society of America, 1970, 47(2A): 441–442. DOI: 10.1121/1.1911547.
|
[26] |
RAFAELS K, BASS C, SALZAR R S, et al. Survival risk assessment for primary blast exposures to the head [J]. Journal of Neurotrauma, 2011, 28: 2319–2328. DOI: 10.1089/neu.2009.1207.
|
[27] |
ZHU F, CHOU C C, YANG K H, et al. Some considerations on the threshold and inter-species scaling law for primary blast-induced traumatic brain injury: a semi-analytical approach [J]. Journal of Mechanics in Medicine and Biology, 2013, 13(4): 1350065. DOI: 10.1142/S0219519413500656.
|
[28] |
KOIKE T, WADA H, ITO F, et al. High-speed video observation of tympanic membrane rupture in guinea pigs [J]. JSME International Journal Series C: Mechanical Systems, Machine Elements and Manufacturing, 2003, 46(4): 1434–1440. DOI: 10.1299/jsmec.46.1434.
|
[29] |
JENSEN J H, BONDING P. Experimental pressure induced rupture of the tympanic membrane in man [J]. Acta Oto-Laryngologica, 1993, 113(1): 62–67. DOI: 10.3109/00016489309135768.
|
[30] |
张洁元. 爆炸冲击波致豚鼠听觉和前庭功能损害评估技术与标准研究 [D]. 重庆: 陆军军医大学, 2022. DOI: 10.27001/d.cnki.gtjyu.2022.000239.
ZHANG J Y. Evaluation techniques and criteria for auditory and vestibular function impairment caused by blast shock waves in guinea pigs [D]. Chongqing: Army Medical University, 2022. DOI: 10.27001/d.cnki.gtjyu.2022.000239.
|
[31] |
AMREIN B E, LETOWSKI T R. High level impulse sounds and human hearing: standards, physiology, quantification: ARL-TR-6017 [R]. Affiliation: U. S. Army Research Laboratory, 2012.
|
[32] |
CULLIS I G. Blast waves and how they interact with structures [J]. BMJ Military Health, 2001, 147(1): 16–26. DOI: 10.1136/jramc-147-01-02.
|
[33] |
PADURARIU S, DE GREEF D, JACOBSEN H, et al. Pressure buffering by the tympanic membrane: in vivo measurements of middle ear pressure fluctuations during elevator motion [J]. Hearing Research, 2016, 340: 113–120. DOI: 10.1016/j.heares.2015.12.004.
|
[34] |
XIE P P, PENG Y, HU J J, et al. Assessment of hearing loss induced by tympanic membrane perforations under blast environment [J]. European Archives of Oto-Rhino-Laryngology, 2020, 277(2): 453–461. DOI: 10.1007/s00405-019-05710-3.
|
[35] |
LITTLEFIELD P D, BRUNGART D S. Long-term sensorineural hearing loss in patients with blast-induced tympanic membrane perforations [J]. Ear and Hearing, 2020, 41(1): 165–172. DOI: 10.1097/AUD.0000000000000751.
|
[36] |
FAY J, PURIA S, DECRAEMER W F, et al. Three approaches for estimating the elastic modulus of the tympanic membrane [J]. Journal of Biomechanics, 2005, 38(9): 1807–1815. DOI: 10.1016/j.jbiomech.2004.08.022.
|
[37] |
PRICE G R, KIM H N, LIM D J, et al. Hazard from weapons impulses: histological and electrophysiological evidence [J]. The Journal of the Acoustical Society of America, 1989, 85(3): 1245–1254. DOI: 10.1121/1.397455.
|
[1] | BAO Yunyu, XIN Jiayan, ZHANG Anqiang, WANG Yanjiang, BU Xianle. Research progress on the pathogenesis and biomarkers of blast-induced traumatic brain injury[J]. Explosion And Shock Waves, 2024, 44(12): 121412. doi: 10.11883/bzycj-2024-0179 |
[2] | FANG Houlin, LU Qiang, GUO Quanshi, LI Guoliang, LIU Cunxu, TAO Sihao, ZHANG Dezhi. Experimental research on the free surface effect of shock wave and bubble behavior of small yield underwater explosion[J]. Explosion And Shock Waves, 2024, 44(8): 081444. doi: 10.11883/bzycj-2024-0003 |
[3] | ZHANG Zhifan, LI Hailong, ZHANG Guiyong, ZONG Zhi, JIANG Yichen. Action time sequence of underwater explosion shock waves and shaped charge projectiles[J]. Explosion And Shock Waves, 2023, 43(10): 102201. doi: 10.11883/bzycj-2022-0397 |
[4] | LIU Bowen, LONG Renrong, ZHANG Qingming, JU Yuanyuan, ZHONG Xianzhe, WANG Haiyang, LIU Wenjin. Study on the corner overpressure characteristics of concentrated reflected shock wave due to internal blast in cabin[J]. Explosion And Shock Waves, 2023, 43(1): 012201. doi: 10.11883/bzycj-2022-0232 |
[5] | ZHAO Jiaxing, LI Qi, ZHANG Liang, LIU Songhan, JIANG Lin. Experimental study on mitigation effects of water mist on blast wave[J]. Explosion And Shock Waves, 2023, 43(10): 105401. doi: 10.11883/bzycj-2023-0108 |
[6] | ZHANG Yunfeng, CHEN Bo, WEI Xin, LI Hao, WU Ke, SUI Yaguang, FANG Long. Numerical modeling and application of shock wave of free-field air explosion[J]. Explosion And Shock Waves, 2023, 43(11): 114202. doi: 10.11883/bzycj-2023-0004 |
[7] | LIU Xiaobo, LI Shuai, ZHANG Aman. An improvement of the wall-pressure theory and numerical method for shock waves in underwater explosion[J]. Explosion And Shock Waves, 2022, 42(1): 014202. doi: 10.11883/bzycj-2021-0106 |
[8] | HUANG Chao, ZHANG Pan, ZENG Fan, XU Weizheng, WANG Jie, LIU Na. A method for adjusting and controlling underwater explosion shock wave[J]. Explosion And Shock Waves, 2022, 42(8): 083201. doi: 10.11883/bzycj-2021-0450 |
[9] | WANG Bo, YANG Jianbo, YAO Ligang, HE Yangyang, LYU Huayi, TANG Jisi, XU Shucai, ZHANG Jinhuan. Blast injuries to human lung induced by blast shock waves[J]. Explosion And Shock Waves, 2022, 42(12): 122201. doi: 10.11883/bzycj-2022-0173 |
[10] | LI Xiaojie, WANG Yuxin, WANG Xiaohong, YAN Honghao, ZENG Xiangyu, WANG Jian. Gas shock waves in the gap between the base and cladding plates during explosive welding[J]. Explosion And Shock Waves, 2021, 41(7): 075301. doi: 10.11883/bzycj-2020-0197 |
[11] | MA Tianbao, WANG Chentao, ZHAO Jinqing, NING Jianguo. High order pseudo arc-length method for strong discontinuity of detonation wave[J]. Explosion And Shock Waves, 2021, 41(11): 114201. doi: 10.11883/bzycj-2020-0366 |
[12] | LI Mei, JIANG Jianwei, WANG Xin. Shock wave propagation characteristics of double layer charge explosion in the air[J]. Explosion And Shock Waves, 2018, 38(2): 367-372. doi: 10.11883/bzycj-2016-0209 |
[13] | Liu Guibing, Hou Hailiang, Zhu Xi, Zhang Guodong. Attenuation of shock wave passing through liquid droplets[J]. Explosion And Shock Waves, 2017, 37(5): 844-852. doi: 10.11883/1001-1455(2017)05-0844-09 |
[14] | Yao Cheng-bao, Li Ruo, Tian Zhou, Guo Yong-hui. Two dimensional simulation for shock wave produced by strong explosion in free air[J]. Explosion And Shock Waves, 2015, 35(4): 585-590. doi: 10.11883/1001-1455(2015)04-0585-06 |
[15] | Fan Jin, Xu Da-li, Ren Xin-jian. Propagation of shock waves in protective structures with holes under contact explosive loads[J]. Explosion And Shock Waves, 2014, 34(6): 658-666. doi: 10.11883/1001-1455(2014)06-0658-09 |
[16] | HouJun-liang, JiangJian-wei, MenJian-bing, WangShu-you. Dynamicresponseofthinplatewithholesunderblastloading[J]. Explosion And Shock Waves, 2013, 33(6): 662-666. doi: 10.11883/1001-1455(2013)06-0662-05 |
[17] | ZHOU Jie, TAO Gang, WANG Jian. Numericalsimulationoflunginjuryinducedbyshockwave[J]. Explosion And Shock Waves, 2012, 32(4): 418-422. doi: 10.11883/1001-1455(2012)04-0418-05 |
[18] | CHEN Wen, ZHANG Qing-ming. A preliminary investigation on dynamic analysis models for missile structures subjected to blast wave[J]. Explosion And Shock Waves, 2009, 29(2): 199-204. doi: 10.11883/1001-1455(2009)02-0199-06 |
[19] | SHI Hua-qiang, ZONG Zhi, JIA Jing-bei. Short-range characters of underwater blast waves[J]. Explosion And Shock Waves, 2009, 29(2): 125-130. doi: 10.11883/1001-1455(2009)02-0125-06 |
[20] | GU Wen-bin, ZHENG Xiang-ping, LIU Jian-qing, LI Dan-jun, LU Ming. Experimental investigation of the oblique collision effects of explosion shock wave on concrete frustum in shallow water[J]. Explosion And Shock Waves, 2006, 26(4): 361-366. doi: 10.11883/1001-1455(2006)04-0361-06 |