Volume 44 Issue 12
Dec.  2024
Turn off MathJax
Article Contents
CHAO Wangshu, FEI Xiaowei, LI Weiping, DOU Yaʼnan, WANG Junlong, HE Xin, LYU Weihao, WU Xiuquan, CHEN Hongqing, CHEN Leiying, MA Tian, FEI Zhou, ZHUANG Zhuo, KANG Yue, FEI Fei. Effective improvement of retinal pathological injury and autophagy changes induced by explosive eye blast injury by protective goggles[J]. Explosion And Shock Waves, 2024, 44(12): 121441. doi: 10.11883/bzycj-2024-0257
Citation: CHAO Wangshu, FEI Xiaowei, LI Weiping, DOU Yaʼnan, WANG Junlong, HE Xin, LYU Weihao, WU Xiuquan, CHEN Hongqing, CHEN Leiying, MA Tian, FEI Zhou, ZHUANG Zhuo, KANG Yue, FEI Fei. Effective improvement of retinal pathological injury and autophagy changes induced by explosive eye blast injury by protective goggles[J]. Explosion And Shock Waves, 2024, 44(12): 121441. doi: 10.11883/bzycj-2024-0257

Effective improvement of retinal pathological injury and autophagy changes induced by explosive eye blast injury by protective goggles

doi: 10.11883/bzycj-2024-0257
  • Received Date: 2024-07-25
  • Rev Recd Date: 2024-10-24
  • Available Online: 2024-10-29
  • Publish Date: 2024-12-01
  • We firstly verified the protective performance of eye equipment (goggles) based on a head dynamic test system and shock tube and field live blast test environments. The results show that goggles have better protective performance and suggest that duty personnel should be equipped with goggles that have combined functions of anti-ultraviolet, anti-glare, anti-smoke and anti-fragmentation in to improve eye protection capabilities. After that, we investigated the tissue damage and functional impairment changes after explosive eye blast injury, and the protective effect and mechanism of the goggles for animal experimental version. This may provide a theoretical basis for prevention and treatment, and also have important implications for the design and improvement of protective goggles. Beagles and C57 mice were used for related animal experiments, and the changes in retinal layer thickness and cell apoptosis were observed after blast injury by HE, Tunel, Nissl staining, visual electrophysiology detection and other methods. It was found that with the increase of blast intensity and the extension of time after explosion, both the degree of retinal injury and cell apoptosis increased, among which the ganglion cell layer and photoreceptor inner and outer segments suffered the most severe damage. Further research on molecular changes indicates that the expression levels of autophagy-related regulatory proteins SQSTM1/p62 (P < 0.0001) and LC3-Ⅱ (P = 0.8437), as well as LC3-Ⅰ (P = 0.003), are significantly increased, suggesting that retinal damage is, to some extent, induced by autophagic mechanisms. The protective goggles could effectively reduce the damage of blast wave to retina, protect the structural integrity of retinal nerve fiber layer, inner and outer nuclear layer, ganglion cell layer and photoreceptor inner and outer segments. At the same time, compared with that of other groups, the difference in retinal layer thickness and cell apoptosis was most significant in the 3.5 MPa group, suggesting that the glasses played the maximum protective effect at this intensity, which may be related to the reduction in the retinal autophagy.
  • loading
  • [1]
    DEMAR J, SHARROW K, HILL M, et al. Effects of primary blast overpressure on retina and optic tract in rats [J]. Frontiers in Neurology, 2016, 7: 59. DOI: 10.3389/fneur.2016.00059.
    [2]
    WANG H C H, CHOI J H, GREENE W A, et al. Pathophysiology of blast-induced ocular trauma with apoptosis in the retina and optic nerve [J]. Military Medicine, 2014, 179(S8): 34–40. DOI: 10.7205/MILMED-D-13-00504.
    [3]
    CHOI J H, GREENE W A, JOHNSON A J, et al. Pathophysiology of blast-induced ocular trauma in rats after repeated exposure to low-level blast overpressure [J]. Clinical & Experimental Ophthalmology, 2015, 43(3): 239–246. DOI: 10.1111/ceo.12407.
    [4]
    TANIELIAN T L, JAYCOX L H. Invisible wounds of war: psychological and cognitive injuries, their consequences, and services to assist recovery [M]. Santa Monica: Rand Corporation, 2008. DOI: 10.1176/ps.2009.60.2.273.
    [5]
    Defense and Veterans Brain Injury Center. DoD numbers for traumatic brain injury worldwide: totals 2000–2013 (Q1-Q3) [EB/OL]. (2014-06-10)[2024-01-07]. http://dvbic.dcoe.mil/dod-worldwide-numbers-tbi.
    [6]
    MAC DONALD C L, JOHNSON A M, WIERZECHOWSKI L, et al. Prospectively assessed clinical outcomes in concussive blast vs nonblast traumatic brain injury among evacuated US military personnel [J]. JAMA Neurology, 2014, 71(8): 994–1002. DOI: 10.1001/jamaneurol.2014.1114.
    [7]
    GOODRICH G L, FLYG H M, KIRBY J E, et al. Mechanisms of TBI and visual consequences in military and veteran populations [J]. Optometry and Vision Science, 2013, 90(2): 105–112. DOI: 10.1097/OPX.0b013e31827f15a1.
    [8]
    BAILOOR S, BHARDWAJ R, NGUYEN T D. Effectiveness of eye armor during blast loading [J]. Biomechanics and Modeling in Mechanobiology, 2015, 14(6): 1227–1237. DOI: 10.1007/s10237-015-0667-z.
    [9]
    MOHAN K, KECOVA H, HERNANDEZ-MERINO E, et al. Retinal ganglion cell damage in an experimental rodent model of blast-mediated traumatic brain injury [J]. Investigative Ophthalmology & Visual Science, 2013, 54(5): 3440–3450. DOI: 10.1167/iovs.12-11522.
    [10]
    JHA K N. Indian soldiers need eye protection [J]. Journal of Clinical and Diagnostic Research, 2017, 11(2): NE01–NE03. DOI: 10.7860/JCDR/2017/20792.9350.
    [11]
    邹振高, 李俊红. 国外防护眼镜的现状与发展趋势 [J]. 中国个体防护装备, 2015(1): 29–31. DOI: 10.16102/j.cnki.cppe.2015.01.007.

    ZOU Z G, LI J H. The current situation and development trend of foreign military protective eyewear [J]. China Personal Protective Equipment, 2015(1): 29–31. DOI: 10.16102/j.cnki.cppe.2015.01.007.
    [12]
    SUNDARAMURTHY A, SKOTAK M, ALAY E, et al. Assessment of the effectiveness of combat eyewear protection against blast overpressure [J]. Journal of Biomechanical Engineering, 2018, 140(7): 071003. DOI: 10.1115/1.4039823.
    [13]
    WILLIAMS S T, HARDING T H, STATZ J K, et al. Blast wave dynamics at the cornea as a function of eye protection form and fit [J]. Military Medicine, 2017, 182(S1): 226–229. DOI: 10.7205/MILMED-D-16-00042.
    [14]
    PARVER L M. The national eye trauma system [J]. International Ophthalmology Clinics, 1988, 28(3): 203–205. DOI: 10.1097/00004397-198802830-00004.
    [15]
    HORNBLASS A. Eye injuries in the military [J]. International Ophthalmology Clinics, 1981, 21(4): 121–138. DOI: 10.1097/00004397-198102140-00008.
    [16]
    HILBER D J. Eye injuries, active component, U. S. Armed Forces, 2000–2010 [J]. Medical Surveillance Monthly Report, 2011, 18(5): 2–7.
    [17]
    蔡志华, 贺葳, 汪剑辉, 等. 爆炸波致颅脑损伤力学机制与防护综述 [J]. 兵工学报, 2022, 43(2): 467–480. DOI: 10.3969/j.issn.1000-1093.2022.02.025.

    CAI Z H, HE W, WANG J H, et al. Review on mechanical mechanism of blast-induced traumatic brain injury and protection technology [J]. Acta Armamentarii, 2022, 43(2): 467–480. DOI: 10.3969/j.issn.1000-1093.2022.02.025.
    [18]
    杨亚东, 李向东, 王晓鸣. 爆炸冲击波空中传播特征参量的优化拟合 [J]. 爆破器材, 2014, 43(1): 13–18. DOI: 10.3969/j.issn.1001-8352.2014.01.004.

    YANG Y D, LI X D, WANG X M. Optimum fitting for characteristic parameters of blast shockwaves traveling in air [J]. Explosive Materials, 2014, 43(1): 13–18. DOI: 10.3969/j.issn.1001-8352.2014.01.004.
    [19]
    康越, 张仕忠, 张远平, 等. 基于激波管评价的单兵头面部装备冲击波防护性能研究 [J]. 爆炸与冲击, 2021, 41(8): 085901. DOI: 10.11883/bzycj-2020-0395.

    KANG Y, ZHANG S Z, ZHANG Y P, et al. Research on anti-shockwave performance of the protective equipment for the head of a soldier based on shock tube evaluation [J]. Explosion and Shock Waves, 2021, 41(8): 085901. DOI: 10.11883/bzycj-2020-0395.
    [20]
    王正国, 孙立英, 杨志焕, 等. 系列生物激波管的研制与应用 [J]. 爆炸与冲击, 1993, 13(1): 77–83. DOI: 10.11883/1001-1455(1993)01-0077-7.

    WANG Z G, SUN L Y, YANG Z H, et al. The design production and application of a series of bio-shock tubes [J]. Explosion and Shock Waves, 1993, 13(1): 77–83. DOI: 10.11883/1001-1455(1993)01-0077-7.
    [21]
    蒋建新, 曾灵. 肺爆炸冲击伤机制与防护研究进展 [J]. 陆军军医大学学报, 2022, 44(5): 395–398. DOI: 10.16016/j.2097-0927.202111179.

    JIANG J X, ZENG L. Advance of protection and mechanism of lung blast injury [J]. Journal of Army Medical University, 2022, 44(5): 395–398. DOI: 10.16016/j.2097-0927.202111179.
    [22]
    唐承功, 杨志焕, 王正国, 等. BST-Ⅰ型生物激波管动物实验研究 [J]. 第三军医大学学报, 1989, 11(3): 172–174. DOI: 10.3321/j.issn:1000-5404.1989.03.004.

    TANG C G, YANG Z H, WANG Z G, et al. An experimental study on the effects of a biological shock tube [J]. Journal of Third Military Medical University, 1989, 11(3): 172–174. DOI: 10.3321/j.issn:1000-5404.1989.03.004.
    [23]
    冷华光, 王正国, 杨志焕, 等. 生物激波管及动物耐受性的实验研究 [J]. 爆炸与冲击, 1993, 13(3): 272–279. DOI: 10.11883/1001-1455(1993)03-0272-8.

    LENG H G, WANG Z G YANG Z H, et al. A biological shock tube and an experimental study on animal tolerance to blast wave [J]. Explosion and Shock Waves, 1993, 13(3): 272–279. DOI: 10.11883/1001-1455(1993)03-0272-8.
    [24]
    SUDHARSAN R, SIMONE K M, ANDERSON N P, et al. Acute and protracted cell death in light-induced retinal degeneration in the canine model of rhodopsin autosomal dominant retinitis pigmentosa [J]. Investigative Ophthalmology and Visual Science, 2017, 58(1): 270–281. DOI: 10.1167/iovs.16-20749.
    [25]
    BROWN E E, DEWEERD A J, ILDEFONSO C J, et al. Mitochondrial oxidative stress in the retinal pigment epithelium (RPE) led to metabolic dysfunction in both the RPE and retinal photoreceptors [J]. Redox Biology, 2019, 24: 101201. DOI: 10.1016/j.redox.2019.101201.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(32)

    Article Metrics

    Article views (62) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return