Volume 40 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
DAI Xianghui, WANG Kehui, SHEN Zikai, DUAN Jian, LI Ming, GU Renhong, LI Pengjie, YANG Hui, KE Ming, ZHOU Gang. Experiment of fast cook-off safety characteristic for penetrator[J]. Explosion And Shock Waves, 2020, 40(9): 092301. doi: 10.11883/bzycj/2020-0016
Citation: DAI Xianghui, WANG Kehui, SHEN Zikai, DUAN Jian, LI Ming, GU Renhong, LI Pengjie, YANG Hui, KE Ming, ZHOU Gang. Experiment of fast cook-off safety characteristic for penetrator[J]. Explosion And Shock Waves, 2020, 40(9): 092301. doi: 10.11883/bzycj/2020-0016

Experiment of fast cook-off safety characteristic for penetrator

doi: 10.11883/bzycj/2020-0016
  • Received Date: 2020-01-07
  • Rev Recd Date: 2020-02-19
  • Publish Date: 2020-09-01
  • To evaluate the fast cook-off safety characteristic of the big-size penetrator, an experimental device was designed. The penetrator with a mass of 290 kg was hoisted at a height of 0.4 m from the aviation fuel level for rapid heating. The surface temperature of the penetrator was collected in real time and the whole experimental process was recorded. The reflected shock wave overpressure at a distance of 7 m from the penetrator centroid was measured. The safety characteristic of the big-size penetrator was analyzed in detail in terms of the heating time, the surface temperature of the penetrator, the damage on experimental site, the peak value of the reflected shock wave overpressure, the reaction mechanism and the response type. The results show that the big-size penetrator starts to react violently at a temperature of 537 ℃ for 16 min and 4 s. The bottom explosive of the penetrator first responds to hot spots under continuous high temperature heating, gradually accumulating high-temperature and high-pressure gas in the shell and tearing the shell to quickly release high-pressure. The peak value of the reflected shock wave overpressure at 7 m is 33.622 kPa, which is much smaller than that caused by the penetrator totally detonated in the air. The reaction characteristic of the penetrator is deflagration, and its fast cook-off safety characteristic meets the standard requirement.
  • loading
  • [1]
    李广武, 赵继伟, 杜春兰, 等. 常规导弹弹药安全性考核与技术[M]. 北京: 中国宇航出版社, 2015: 45−118.
    [2]
    WITHERELL M, PFLEGL G. Prediction of propellant and explosive cook-off for the 30-mm HEI-T and raufoss MPLD-T rounds chambered in a hot MK44 Barrel (advanced amphibious assault vehicle-AAAV): ADA-388280[R]. Springfield: NTIS, 2001.
    [3]
    TRINGE J W, GLASCOE E A, MCCLELLAND M A, et al. Pre-ignition confinement and deflagration violence in LX-10 and PBX 9501 [J]. Journal of Applied Physics, 2014, 116(5): 054903. DOI: 10.1063/1.4891994.
    [4]
    GROSS M L, MEREDITH K V, BECKSTEAD M W. Fast cook-off modeling of HMX [J]. Combustion and Flame, 2015, 162(9): 3307–3315. DOI: 10.1016/j.combustflame.2015.05.020.
    [5]
    张旭, 谷岩, 张远平, 等. TATB基PBX的快速烤燃实验与数值模拟 [J]. 含能材料, 2010, 18(5): 551–557. DOI: 10.3969/j.issn.1006-9941.2010.05.017.

    ZHANG X, GU Y, ZHANG Y P, et al. Numerical simulation and experimental study of fast cook-off of TATB-based PBX explosive [J]. Chinese Journal of Energetic Materials, 2010, 18(5): 551–557. DOI: 10.3969/j.issn.1006-9941.2010.05.017.
    [6]
    程波, 李文彬, 郑宇, 等. 不同约束条件下ANPyO炸药快烤试验研究 [J]. 爆破器材, 2013, 42(5): 53–56. DOI: 10.3969/j.issn.1001-8352.2013.05.012.

    CHENG B, LI W B, ZHENG Y, et al. Study on ANPyO explosive in fast cook-off test under different constraint conditions [J]. Explosive Materials, 2013, 42(5): 53–56. DOI: 10.3969/j.issn.1001-8352.2013.05.012.
    [7]
    陈科全, 黄亨建, 路中华, 等. 强约束下典型熔铸和浇注炸药的烤燃特性对比 [J]. 四川兵工学报, 2015, 36(1): 133–136. DOI: 10.11809/scbgxb2015.01.037.

    CHEN K Q, HUANG H J, LU Z H, et al. Experimental study on cook-off test for melt-cast and cast-cured explosive at strong constraint [J]. Journal of Sichuan Ordnance, 2015, 36(1): 133–136. DOI: 10.11809/scbgxb2015.01.037.
    [8]
    李亮亮, 沈飞, 王胜强, 等. 外部涂层及包覆层对HAE装药快速烤燃实验的影响 [J]. 火炸药学报, 2019, 42(2): 202–206. DOI: 10.14077/j.issn.1007-7812.2019.02.017.

    LI L L, SHEN F, WANG S Q, et al. Effect of external shell coating and coating layer on fast cook-off test of HAE charge [J]. Chinese Journal of Explosives & Propellants, 2019, 42(2): 202–206. DOI: 10.14077/j.issn.1007-7812.2019.02.017.
    [9]
    李亮亮, 沈飞, 屈可朋, 等. 不同密封及包覆下HAE装药快速烤燃的响应特性 [J]. 含能材料, 2018, 26(8): 696–700. DOI: 10.11943/CJEM2018001.

    LI L L, SHEN F, QU K P, et al. Response characteristics of HAE charge with different sealing condition and coating layer in fast cook-off [J]. Chinese Journal of Energetic Materials, 2018, 26(8): 696–700. DOI: 10.11943/CJEM2018001.
    [10]
    孙培培, 南海. 壳体参数对炸药快速烤燃响应的影响 [J]. 火工品, 2016(4): 29–31. DOI: 10.3969/j.issn.1003-1480.2016.04.009.

    SUN P P, NAN H. The influence of shell parameters on fast cook-off reaction of explosives [J]. Initiators & Pyrotechnics, 2016(4): 29–31. DOI: 10.3969/j.issn.1003-1480.2016.04.009.
    [11]
    孙培培, 南海, 牛余雷, 等. 壳体厚度对TNT炸药快速烤燃响应的影响 [J]. 含能材料, 2011, 19(4): 432–435. DOI: 10.3969/j.issn.1006-9941.2011.04.018.

    SUN P P, NAN H, NIU Y L, et al. Effect of shell thickness on response level of confined TNT in fast cook-off [J]. Chinese Journal of Energetic Materials, 2011, 19(4): 432–435. DOI: 10.3969/j.issn.1006-9941.2011.04.018.
    [12]
    徐双培, 胡双启, 王东青, 等. 壳体密封性对小尺寸弹药快速烤燃响应规律的影响 [J]. 火炸药学报, 2009, 32(3): 35–37. DOI: 10.3969/j.issn.1007-7812.2009.03.010.

    XU S P, HU S Q, WANG D Q, et al. Effect of shell sealing on the response of small scale ammunition in fast cook-off test [J]. Chinese Journal of Explosives & Propellants, 2009, 32(3): 35–37. DOI: 10.3969/j.issn.1007-7812.2009.03.010.
    [13]
    智小琦, 胡双启, 肖志华, 等. 密封条件对钝化RDX快速烤燃响应特性的影响 [J]. 火炸药学报, 2010, 33(1): 31–33, 37. DOI: 10.3969/j.issn.1007-7812.2010.01.008.

    ZHI X Q, HU S Q, XIAO Z H, et al. Effect of sealing conditions on fast cook-off response properties of passive RDX [J]. Chinese Journal of Explosives & Propellants, 2010, 33(1): 31–33, 37. DOI: 10.3969/j.issn.1007-7812.2010.01.008.
    [14]
    安强, 胡双启. 装药密度对钝化黑索今快速烤燃特性的影响 [J]. 四川兵工学报, 2010, 31(10): 64–66. DOI: 10.3969/j.issn.1006-0707.2010.10.019.
    [15]
    刘子德, 智小琦, 周捷, 等. 药量和升温速率对DNAN基熔铸炸药烤燃特性的影响 [J]. 爆炸与冲击, 2019, 39(1): 012301. DOI: 10.11883/bzycj-2018-0264.

    LIU Z D, ZHI X Q, ZHOU J, et al. Influence of explosive mass and heating rate on cook-off response characteristics of DNAN based casting explosive [J]. Explosion and Shock Waves, 2019, 39(1): 012301. DOI: 10.11883/bzycj-2018-0264.
    [16]
    刘静, 余永刚. 模块装药快速烤燃特性的数值预测 [J]. 含能材料, 2019, 27(5): 371–376. DOI: 10.11943/CJEM2018178.

    LIU J, YU Y G. Numerical prediction of fast cook-off characteristics for modular charges [J]. Chinese Journal of Energetic Materials, 2019, 27(5): 371–376. DOI: 10.11943/CJEM2018178.
    [17]
    李文凤, 余永刚, 叶锐. 底排药快速烤燃特性的数值模拟 [J]. 含能材料, 2016, 24(10): 941–946. DOI: 10.11943/j.issn.1006-9941.2016.10.003.

    LI W F, YU Y G, YE R. Numerical simulation of fast cook-off characteristics for base bleeding propellant [J]. Chinese Journal of Energetic Materials, 2016, 24(10): 941–946. DOI: 10.11943/j.issn.1006-9941.2016.10.003.
    [18]
    隋树元, 王树山. 终点效应学[M]. 北京: 国防工业出版社, 2000: 279−293.

    SUI S Y, WANG S S. Terminal effects[M]. Beijing: National Defense Industry Press, 2000: 279−293.
    [19]
    冯晓军, 王晓峰, 韩助龙. 炸药装药尺寸对慢速烤燃响应的研究 [J]. 爆炸与冲击, 2005, 25(3): 285–288. DOI: 10.11883/1001-1455(2005)03-0285-04.

    FENG X J, WANG X F, HAN Z L. The study of charging size influence on the response of explosives in slow cook-off test [J]. Explosion and Shock Waves, 2005, 25(3): 285–288. DOI: 10.11883/1001-1455(2005)03-0285-04.
    [20]
    荆松吉, 张振宇. 炸药圆柱体烤燃二维数值模拟 [J]. 含能材料, 2004, 12(S2): 521–525. DOI: 10.3969/j.issn.1006-9941.2004.z2.045.

    JING S J, ZHANF Z Y. Two-dimensional numerical simulation of cylindrical explosives cook-off [J]. Chinese Journal of Energetic Materials, 2004, 12(S2): 521–525. DOI: 10.3969/j.issn.1006-9941.2004.z2.045.
    [21]
    OCTÁVIA F, ALAN B. Effect of scale on cook-off studies of explosives [C] // Proceedings of the 26th International Pyrotechnic Seminar. 1999.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (3163) PDF downloads(91) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return