YE Qing, LIN Bai-quan, JIAN Cong-guang, JIA Zhen-zhen. Effectsofmagneticfieldonmethaneexplosionanditspropagation[J]. Explosion And Shock Waves, 2011, 31(2): 153-157. doi: 10.11883/1001-1455(2011)02-0153-05
Citation: Liang Xiao, Wang Ruili. Mixed uncertainty quantification and its application in upwind scheme for computational fluid dynamics (CFD)[J]. Explosion And Shock Waves, 2016, 36(4): 509-515.

Mixed uncertainty quantification and its application in upwind scheme for computational fluid dynamics (CFD)

  • Received Date: 2014-12-24
  • Rev Recd Date: 2015-03-27
  • Publish Date: 2016-07-25
  • Both aleatory uncertainty and epistemic uncertainty exist in the initial and boundary conditions when we numerically solve the CFD with sharp discontinuity. In this paper, mixed uncertainty quantification approaches are developed to deal with this situation. Specifically, the outer level uncertainty is linked to epistemic uncertainties, and the inner uncertainty is linked to aleatory uncertainty. The non-intrusive polynomial chaos method is utilized to cope with the aleatory uncertainties, while the P-box theory is used to deal with the epistemic uncertainties, and the upwind scheme and Riemann solver are used to solve the deterministic system. We apply this method to the Sod problem in the CFD, and acquire preferable effect. This method evaluates the influence of input uncertainty such as density (aleatory uncertainty) and polytrophic exponent (epistemic uncertainty) on the output uncertainty, the efficiency of this method is also proved. This method is also helpful in evaluating the degree of confidence and validation of the result from modeling and simulation by other models.
  • [1]
    Roache P J. Verification of codes and calculations[J]. AIAA Journal, 1998, 36(5):696-702. doi: 10.2514/2.457
    [2]
    Staf A A. Guide for the verification and validation of computational fluid dynamics simulations[M]. Reston: American Institute of Aeronautics and Astronautics, 1998:126-180.
    [3]
    American Nuclear Society. Guidelines for the verification and validation of scientific and engineering computer programs for the nuclear industry[M]. ANSI/ANS-10.4-1987, 1987: 63-119.
    [4]
    邓小刚, 宗文刚, 张来平, 等.计算流体力学中的验证与确认[J].力学进展, 2007, 37(2):279-288. doi: 10.3321/j.issn:1000-0992.2007.02.011

    Deng Xiaogang, Zong Wengang, Zhang Laiping, et al. Verification and validation in computational fluid dynamics[J]. Advances in Mechanics, 2007, 37(2):279-288. doi: 10.3321/j.issn:1000-0992.2007.02.011
    [5]
    王瑞利, 温万治.复杂工程建模与模拟的验证与确认[J].计算机辅助工程, 2014, 23(4):61-68. http://d.old.wanfangdata.com.cn/Conference/8538180

    Wang Ruili, Wen Wanzhi. Advances in verification and validation of modeling and simulation of the complex engineering[J]. Computer Aided Engineering, 2014, 23(4):61-68. http://d.old.wanfangdata.com.cn/Conference/8538180
    [6]
    刘全, 王瑞利, 林忠, 等.爆轰计算JWL状态方程参数不确定度研究[J].爆炸与冲击, 2013, 33(6):647-654. doi: 10.3969/j.issn.1001-1455.2013.06.014

    Liu Quan, Wang Ruili, Lin Zhong, et al. Uncertainty quantification for JWL EOS parameters in explosive numerical simulation[J]. Explosion and Shock Waves, 2013, 33(6):647-654. doi: 10.3969/j.issn.1001-1455.2013.06.014
    [7]
    刘全, 王瑞利, 林忠.非嵌入式多项式混沌方法在拉氏计算中的应用[J].固体力学学报, 2013, 33(增):224-233. http://d.old.wanfangdata.com.cn/Conference/8155576

    Liu Quan, Wang Ruili, Lin Zhong. Uncertainty quantification for Lagrange computation using non-intrusive polynomial chaos[J]. Chinese Journal of Solid Mechanics, 2013, 33(suppl):224-233. http://d.old.wanfangdata.com.cn/Conference/8155576
    [8]
    Oberkampf W L, Roy C. Verification and validation in scientific computing[M]. New York: Cambridge University Press, 2010:241-305.
    [9]
    水鸿寿.一维流体力学差分方法[M].北京:国防工业出版社, 1998:225-236.
    [10]
    Xiu Dongbin, Karniadkis G E. The Wiener-Askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2002, 24(2):619-644. doi: 10.1137/S1064827501387826
    [11]
    Cameron R H, Martin W T. The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals[J]. Annals of Mathematics, 1947, 48(2):385-398. doi: 10.2307/1969178
  • Relative Articles

  • Cited by

    Periodical cited type(6)

    1. 高建村,王乐,胡守涛,孙谞,周尚勇,王涛. 不同磁性金属丝对丙烷爆炸反应抑制机理研究. 中国安全生产科学技术. 2020(07): 125-130 .
    2. 王连聪,梁运涛,罗海珠. 我国矿井热动力灾害理论研究进展与展望. 煤炭科学技术. 2018(07): 1-9 .
    3. 路长,刘洋,于子凯,潘荣锟,刘磊,滕飞. 四氟乙烷对甲烷/空气爆炸特性的影响. 化工进展. 2017(10): 3596-3603 .
    4. 徐永亮,王兰云,余明高,万少杰,梁栋林. 感应式荷电细水雾对瓦斯爆炸传播速度的影响. 中南大学学报(自然科学版). 2016(08): 2884-2890 .
    5. 余明高,梁栋林,徐永亮,郑凯,纪文涛. 荷电细水雾抑制瓦斯爆炸实验研究. 煤炭学报. 2014(11): 2232-2238 .
    6. 丁小勇,谭迎新,李媛,秦涧,许航. 管道倾斜角对瓦斯爆炸影响的实验研究. 消防科学与技术. 2012(12): 1269-1271 .

    Other cited types(14)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (4042) PDF downloads(16) Cited by(20)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return