[1] | CHEN Jianliang, YANG Pu, LI Jicheng, CHEN Gang, DENG Hongjian, FAN Zhigeng. Numerical simulation on the deflection behavior of large caliber conical nose projectile at oblique high-speed water entry[J]. Explosion And Shock Waves, 2024, 44(7): 073301. doi: 10.11883/bzycj-2023-0398 |
[2] | QIAN Bingwen, ZHOU Gang, LI Mingrui, YIN Lixin, GAO Pengfei, CHEN Chunlin, MA Kun. Rigid-body critical transformation velocity of a high-strength steel projectile penetrating concrete targets at high velocities[J]. Explosion And Shock Waves, 2024, 44(10): 103301. doi: 10.11883/bzycj-2022-0309 |
[3] | FANG Houlin, LU Qiang, GUO Quanshi, LI Guoliang, LIU Cunxu, TAO Sihao, ZHANG Dezhi. Experimental research on the free surface effect of shock wave and bubble behavior of small yield underwater explosion[J]. Explosion And Shock Waves, 2024, 44(8): 081444. doi: 10.11883/bzycj-2024-0003 |
[4] | MA Chenyang, WU Li, SUN Miao. Influence of free surface numbers on the energy distribution and attenuation of vibration signals of underwater drilling blasting[J]. Explosion And Shock Waves, 2022, 42(1): 015201. doi: 10.11883/bzycj-2020-0436 |
[5] | LI Ming, WANG Kehui, ZOU Huihui, DUAN Jian, GU Renhong, DAI Xianghui, YANG Hui. Crater morphology of a projectile penetrating a thick concrete target[J]. Explosion And Shock Waves, 2022, 42(8): 083302. doi: 10.11883/bzycj-2021-0294 |
[6] | WANG Yuntian, ZENG Xiangguo, CHEN Huayan, YANG Xin, WANG Fang, QI Zhongpeng. Multi-scale simulation study on characteristics of free surface velocity curve in ductile metal spallation[J]. Explosion And Shock Waves, 2021, 41(8): 084202. doi: 10.11883/bzycj-2020-0467 |
[7] | LIU Xiangyu, GONG Min, WU Haojun, AN Di. Determination method of tunnel blasting parameters using electronic detonator under changing condition of free surface[J]. Explosion And Shock Waves, 2021, 41(10): 105202. doi: 10.11883/bzycj-2020-0428 |
[8] | GAO Weitao, PENG Kefeng, ZHANG Yongliang, ZHENG Hang, ZHAO Kai, ZHENG Zhijun. On ballistic performance of a metal target with crescent-shaped cavity structure[J]. Explosion And Shock Waves, 2021, 41(5): 053303. doi: 10.11883/bzycj-2020-0473 |
[9] | GUO Hu, HE Liling, CHEN Xiaowei, CHEN Gang, LI Jicheng. Penetration mechanism of a high-speed projectile into a shelter made of spherical aggregates[J]. Explosion And Shock Waves, 2020, 40(10): 103301. doi: 10.11883/bzycj-2019-0428 |
[10] | DUAN Zhuoping, LI Shurui, MA Zhaofang, OU Zhuocheng, HUANG Fenglei. Analytical model for attitude deflection of rigid projectile during oblique perforation of concrete targets[J]. Explosion And Shock Waves, 2019, 39(6): 063302. doi: 10.11883/bzycj-2018-0411 |
[11] | JIN Yunsheng, SUN Chengwei, ZHAO Jianheng, LUO Binqiang, WANG Guiji, TAN Fuli. Direct calculation method for free surface data processing of step target in ICE[J]. Explosion And Shock Waves, 2019, 39(4): 044201. doi: 10.11883/bzycj-2017-0294 |
[12] | HONG yong, MA Honghao, SHEN Zhaowu, REN Lijie, CUI Yu, ZHAO Kai. Research and application on efficient rock blasting based on circular free surface[J]. Explosion And Shock Waves, 2018, 38(1): 98-105. doi: 10.11883/bzycj-2016-0176 |
[13] | Deng Yongjun, Chen Xiaowei, Yao Yong, Yang Tao. On ballistic trajectory of rigid projectile normal penetration based on a meso-scopic concrete model[J]. Explosion And Shock Waves, 2017, 37(3): 377-386. doi: 10.11883/1001-1455(2017)03-0377-10 |
[14] | MINGFu-ren, ZHANGA-man, YANG Wen-shan. Three-dimensionalsimulationsonexplosiveloadcharacteristicsof
underwaterexplosionnearfreesurface[J]. Explosion And Shock Waves, 2012, 32(5): 508-514. doi: 10.11883/1001-1455(2012)05-0508-07 |
[15] | GONG Bai-lin, LU Fang-yun, LI Xiang-yu. Atheoreticalmodelforforecastingdeformationshapes
ofdeformablewarheads[J]. Explosion And Shock Waves, 2010, 30(1): 65-69. doi: 10.11883/1001-1455(2010)01-0065-05 |
[16] | WANG Cheng-hua, CHEN Pei-yin, XU Xiao-cheng. Filtering of penetration deceleration data and determining of penetration deceleration on the rigid-body[J]. Explosion And Shock Waves, 2007, 27(5): 416-419. doi: 10.11883/1001-1455(2007)05-0416-04 |