[1] |
何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究 [J]. 岩石力学与工程学报, 2005, 24(16): 2803–2813. DOI: 10.3321/j.issn:1000-6915.2005.16.001.HE M C, XIE H P, PENG S P, et al. Study on rock mechanics in deep mining engineering [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803–2813. DOI: 10.3321/j.issn:1000-6915.2005.16.001.
|
[2] |
钱七虎. 地下工程建设安全面临的挑战与对策 [J]. 岩石力学与工程学报, 2012, 31(10): 1945–1956. DOI: 10.3969/j.issn.1000-6915.2012.10.001.QIAN Q H. Challenges faced by underground projects construction safety and countermeasures [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 1945–1956. DOI: 10.3969/j.issn.1000-6915.2012.10.001.
|
[3] |
刘达, 卢文波, 陈明, 等. 隧洞钻爆开挖爆破振动主频衰减公式研究 [J]. 岩石力学与工程学报, 2018, 37(9): 2015–2026. DOI: 10.13722/j.cnki.jrme.2018.0311.LIU D, LU W B, CHEN M, et al. Attenuation formula of the dominant frequency of blasting vibration during tunnel excavation [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 2015–2026. DOI: 10.13722/j.cnki.jrme.2018.0311.
|
[4] |
单仁亮, 宋立伟, 白瑶, 等. 爆破作用下冻结岩壁损伤评价的模型试验研究 [J]. 岩石力学与工程学报, 2014, 33(10): 1945–1952. DOI: 10.13722/j.cnki.jrme.2014.10.001.SHAN R L, SONG L W, BAI Y, et al. Model test studies of damage evaluation of frozen rock wall under blasting loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(10): 1945–1952. DOI: 10.13722/j.cnki.jrme.2014.10.001.
|
[5] |
刘亮, 卢文波, 陈明, 等. 钻爆开挖条件下岩体临界破碎状态的损伤阈值统计研究 [J]. 岩石力学与工程学报, 2016, 35(6): 1133–1140. DOI: 10.13722/j.cnki.jrme.2015.0851.LIU L, LU W B, CHEN M, et al. Statistic damage threshold of critical broken rock mass under blasting load [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(6): 1133–1140. DOI: 10.13722/j.cnki.jrme.2015.0851.
|
[6] |
闫长斌. 基于声波频谱特征的岩体爆破累积损伤效应分析 [J]. 岩土力学, 2017, 38(9): 2721–2727, 2745. DOI: 10.16285/j.rsm.2017.09.033.YAN C B. Analysis of cumulative damage effect of rock mass blasting based on acoustic frequency spectrum characters [J]. Rock and Soil Mechanics, 2017, 38(9): 2721–2727, 2745. DOI: 10.16285/j.rsm.2017.09.033.
|
[7] |
XIONG J J, SHENOI R A. A two-stage theory on fatigue damage and life prediction of composites [J]. Composites Science and Technology, 2004, 64(9): 1331–1343. DOI: 10.1016/j.compscitech.2003.10.006.
|
[8] |
金解放, 李夕兵, 王观石, 等. 循环冲击载荷作用下砂岩破坏模式及其机理 [J]. 中南大学学报(自然科学版), 2012, 43(4): 1453–1461.JIN J F, LI X B, WANG G S, et al. Failure modes and mechanisms of sandstone under cyclic impact loadings [J]. Journal of Central South University (Science and Technology), 2012, 43(4): 1453–1461.
|
[9] |
金解放, 李夕兵, 殷志强, 等. 轴压和围压对循环冲击下砂岩能量耗散的影响 [J]. 岩土力学, 2013, 34(11): 3096–3102, 3109. DOI: 10.16285/j.rsm.2013.11.007.JIN J F, LI X B, YIN Z Q, et al. Effects of axial compression and confining pressure on energy dissipation of sandstone under cyclic impact loads [J]. Rock and Soil Mechanics, 2013, 34(11): 3096–3102, 3109. DOI: 10.16285/j.rsm.2013.11.007.
|
[10] |
WANG Z L, TIAN N C, WANG J G, et al. Experimental study on damage mechanical characteristics of heat-treated granite under repeated impact [J]. Journal of Materials in Civil Engineering, 2018, 30(11): 04018274. DOI: 10.1061/(ASCE)MT.1943-5533.0002465.
|
[11] |
LI X B, LOK T S, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate [J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 21–39. DOI: 10.1007/s00603-004-0030-7.
|
[12] |
林大能, 陈寿如. 循环冲击荷载作用下岩石损伤规律的试验研究 [J]. 岩石力学与工程学报, 2005, 24(22): 4094–4098. DOI: 10.3321/j.issn:1000-6915.2005.22.014.LIN D N, CHEN S R. Experimental study on damage evolution law of rock under cyclical impact loadings [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(22): 4094–4098. DOI: 10.3321/j.issn:1000-6915.2005.22.014.
|
[13] |
王彤, 宋战平, 杨建永. 循环冲击作用下风化红砂岩动态响应特性 [J]. 岩石力学与工程学报, 2019, 38(S1): 2772–2778. DOI: 10.13722/j.cnki.jrme.2018.1448.WANG T, SONG Z P, YANG J Y. Dynamic response characteristics of weathered red sandstone under cyclic impact [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2772–2778. DOI: 10.13722/j.cnki.jrme.2018.1448.
|
[14] |
左建平, 周宏伟, 范雄, 等. 三点弯曲下热处理北山花岗岩的断裂特性研究 [J]. 岩石力学与工程学报, 2013, 32(12): 2422–2430.ZUO J P, ZHOU H W, FAN X, et al. Research on fracture behavior of Beishan granite after heat treatment under three-point bending [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2422–2430.
|
[15] |
贺晶晶, 师俊平. 冻融循环作用下砂岩三点弯曲断裂性能试验及其破坏形态研究 [J]. 岩石力学与工程学报, 2017, 36(12): 2917–2925. DOI: 10.13722/j.cnki.jrme.2017.0778.HE J J, SHI J P. Fracturing behavior and failure pattern of sandstone in three-point bending test under freezing-thawing cycles [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 2917–2925. DOI: 10.13722/j.cnki.jrme.2017.0778.
|
[16] |
杨健锋, 梁卫国, 陈跃都, 等. 不同水损伤程度下泥岩断裂力学特性试验研究 [J]. 岩石力学与工程学报, 2017, 36(10): 2431–2440. DOI: 10.13722/j.cnki.jrme.2017.0690.YANG J F, LIANG W G, CHEN Y D, et al. Experiment research on the fracturing characteristics of mudstone with different degrees of water damage [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2431–2440. DOI: 10.13722/j.cnki.jrme.2017.0690.
|
[17] |
HU L Q, LI X B. Damage and fragmentation of rock under experiencing impact load [J]. Journal of Central South University of Technology, 2006, 13(4): 432–437. DOI: 10.1007/s11771-006-0063-z.
|
[18] |
付安琪, 蔚立元, 苏海健, 等. 循环冲击损伤后大理岩静态断裂力学特性研究 [J]. 岩石力学与工程学报, 2019, 38(10): 2021–2030. DOI: 10.13722/j.cnki.jrme.2019.0323.FU A Q, YU L Y, SU H J, et al. Experimental study on static fracturing mechanical characteristics of marble after cyclic impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 2021–2030. DOI: 10.13722/j.cnki.jrme.2019.0323.
|
[19] |
汪小梦, 朱哲明, 施泽彬, 等. 基于VB-SCSC岩石试样的动态断裂韧度测试方法研究 [J]. 岩石力学与工程学报, 2018, 37(2): 302–311. DOI: 10.13722/j.cnki.jrme.2017.0351.WANG X M, ZHU Z M, SHI Z B, et al. A method measuring dynamic fracture toughness of rock using VB-SCSC specimens [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 302–311. DOI: 10.13722/j.cnki.jrme.2017.0351.
|
[20] |
周磊, 朱哲明, 董玉清, 等. 中低速冲击载荷下巷道内裂纹的动态响应 [J]. 岩石力学与工程学报, 2017, 36(6): 1363–1372. DOI: 10.13722/j.cnki.jrme.2016.1403.ZHOU L, ZHU Z M, DONG Y Q, et al. Dynamic response of cracks in tunnels under impact loading of medium-low speed [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1363–1372. DOI: 10.13722/j.cnki.jrme.2016.1403.
|
[21] |
DU H B, DAI F, XU Y, et al. Numerical investigation on the dynamic strength and failure behavior of rocks under hydrostatic confinement in SHPB testing [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 108: 43–57. DOI: 10.1016/j.ijrmms.2018.05.008.
|
[22] |
XU Y, DAI F, XU N W, et al. Numerical investigation of dynamic rock fracture toughness determination using a semi-circular bend specimen in split Hopkinson pressure bar testing [J]. Rock Mechanics and Rock Engineering, 2016, 49(3): 731–745. DOI: 10.1007/s00603-015-0787-x.
|
[23] |
LI X B, ZOU Y, ZHOU Z L. Numerical simulation of the rock SHPB test with a special shape striker based on the discrete element method [J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1693–1709. DOI: 10.1007/s00603-013-0484-6.
|
[24] |
WANG P, YIN T B, LI X B, et al. Dynamic properties of thermally treated granite subjected to cyclic impact loading [J]. Rock Mechanics and Rock Engineering, 2019, 52(4): 991–1010. DOI: 10.1007/s00603-018-1606-y.
|
[25] |
LI D Y, HAN Z Y, SUN X L, et al. Dynamic mechanical properties and fracturing behavior of marble specimens containing single and double flaws in SHPB tests [J]. Rock Mechanics and Rock Engineering, 2019, 52(6): 1623–1643. DOI: 10.1007/s00603-018-1652-5.
|
[26] |
付龙龙, 周顺华, 田志尧, 等. 双轴压缩条件下颗粒材料中力链的演化 [J]. 岩土力学, 2019, 40(6): 2427–2434. DOI: 10.16285/j.rsm.2018.1212.FU L L, ZHOU S H, TIAN Z Y, et al. Force chain evolution in granular materials during biaxial compression [J]. Rock and Soil Mechanics, 2019, 40(6): 2427–2434. DOI: 10.16285/j.rsm.2018.1212.
|
[27] |
KURUPPU M D, OBARA Y, AYATOLLAHI M R, et al. ISRM-Suggested method for determining the mode Ⅰ static fracture toughness using semi-circular bend specimen [J]. Rock Mechanics and Rock Engineering, 2014, 47(1): 267–274. DOI: 10.1007/s00603-013-0422-7.
|