多孔聚氨酯基复合削爆屏障的防护性能

周颖 黄广炎 王涛 解亚宸 张旭东

周颖, 黄广炎, 王涛, 解亚宸, 张旭东. 多孔聚氨酯基复合削爆屏障的防护性能[J]. 爆炸与冲击, 2023, 43(10): 105101. doi: 10.11883/bzycj-2022-0375
引用本文: 周颖, 黄广炎, 王涛, 解亚宸, 张旭东. 多孔聚氨酯基复合削爆屏障的防护性能[J]. 爆炸与冲击, 2023, 43(10): 105101. doi: 10.11883/bzycj-2022-0375
ZHOU Ying, HUANG Guangyan, WANG Tao, XIE Yachen, ZHANG Xudong. Blast mitigation performance of porous polyurethane-basedcomposite explosion-proof barrier[J]. Explosion And Shock Waves, 2023, 43(10): 105101. doi: 10.11883/bzycj-2022-0375
Citation: ZHOU Ying, HUANG Guangyan, WANG Tao, XIE Yachen, ZHANG Xudong. Blast mitigation performance of porous polyurethane-basedcomposite explosion-proof barrier[J]. Explosion And Shock Waves, 2023, 43(10): 105101. doi: 10.11883/bzycj-2022-0375

多孔聚氨酯基复合削爆屏障的防护性能

doi: 10.11883/bzycj-2022-0375
基金项目: 国家自然科学基金(11772059);国家重点研发计划(2017yfc0822304)
详细信息
    作者简介:

    周 颖(1997- ),女,博士研究生,zhouying@bit.edu.cn

    通讯作者:

    黄广炎(1982- ),男,博士,教授, huanggy@bit.edu.cn

  • 中图分类号: O383

Blast mitigation performance of porous polyurethane-basedcomposite explosion-proof barrier

  • 摘要: 针对削弱爆炸恐怖袭击危害这一公共安全领域的热点难题,开展新型削/防爆结构的研究刻不容缓。聚氨酯泡沫具有密度低、微观结构易设计、在爆炸载荷作用下不会产生二次杀伤性破片等优点,在新型削爆结构方面具有良好的应用前景。基于削弱爆炸危害的研究背景,搭建了定向冲击波流场装置对聚氨酯平板进行爆炸加载实验,并通过流固耦合数值模拟对实验进行了验证。在此基础上,利用已验证的模拟方法针对聚氨酯(polyurethane, PU)、水体环形复合屏障面向内爆炸载荷的削弱效应进行了模拟分析。以屏障的总体积相等作为设计前提,对比了PU/水、水、水/PU这3种屏障的冲击波削弱性能,并分析了聚氨酯密度对性能的影响规律。结果表明:削爆屏障的存在迫使冲击波发生反射、绕射、透射以及波与波之间的相互作用。相比于纯水屏障,PU/水屏障在自重下降32%的同时,依然能够有效削减冲击波峰值(可达13.3%),主要利用了内侧聚氨酯波的低阻抗来降低冲击波的反射强度。
  • 图  1  多孔聚氨酯试样及对应的SEM图像

    Figure  1.  Physical pictures and SEM images of porous polyurethane

    图  2  聚氨酯泡沫的应力-应变曲线

    Figure  2.  Stress-strain curves of polyurethane foam

    图  3  定向流场爆炸冲击实验布局示意图(单位: mm)

    Figure  3.  Arrangement of a tubular explosive directional flow field device (unit in mm)

    图  4  起爆后不同密度的聚氨酯试样的响应过程

    Figure  4.  Response process of polyurethane samples with different densities after explosion

    图  5  实验靶后压力峰值对比

    Figure  5.  Comparison of peak pressure behind sample in experiment

    图  6  AUTODYN二维轴对称数值模型示意图(单位:mm)

    Figure  6.  Numerical model of axially symmetric 2D on AUTODYN (unit in mm)

    图  7  实验与数值模拟在观测点处的压力时程曲线对比

    Figure  7.  Comparison of the overpressure–time histories between the experimentaldata and numerical results on gauge

    图  8  数值模型示意图(单位: mm)

    Figure  8.  Schematic of numerical model (unit in mm)

    图  9  起爆后不同时刻冲击波及爆炸产物形态

    Figure  9.  Process of shock waves and explosion products in the case of structures at different moments after explosion

    图  10  3种防护结构水、PU/水和水/PU对应的不同测点处的无量纲超压峰值参数

    Figure  10.  Dimensionless peak overpressure at different gauges of protective structures of water, PU/water, and water/PU

    图  11  防护结构水,PU/水对应的无量纲超压峰值参数Mp变化曲线对比

    Figure  11.  Comparison of dimensionless peak overpressure parameter Mp variation curves correspondingto structures of water, PU/water

    图  12  防护结构水、水/PU对应的无量纲超压峰值参数Mp变化曲线对比

    Figure  12.  Comparison of dimensionless peak overpressure parameter Mp variation curves correspondingto structures of water, water/PU

    表  1  冲击波超压对有生力量的破坏作用阈值[19]

    Table  1.   Threshold value of destructive effect ofshockwave overpressure on effectives[19]

    等级 超压峰值范围/MPa 破坏作用
    < 0.02 没有杀伤作用
    0.02~0.03 轻伤(轻微的挫伤)
    0.03~0.05 中等损伤(听觉器官损伤、
    中等挫伤、骨折等)
    0.05~0.10 重伤、甚至死亡(内脏严重挫伤)
    > 0.10 大部分死亡
    下载: 导出CSV

    表  2  泡沫材料参数

    Table  2.   Material parameters for PU foams

    密度/(kg·m−3) 体积模量/MPa 剪切模量/MPa 最大拉伸应力/MPa 泊松比
    100 5.53 8.30 0.69 0.12
    200 11.27 16.90 2.77 0.13
    300 37.35 56.02 3.64 0.18
    下载: 导出CSV

    表  3  实验与数值模拟的靶后压力峰值及对比

    Table  3.   Comparison between experimental and numerical simulation on peak pressure behind target

    工况 靶后压力峰值/kPa 衰减率/%
    实验 数值模拟 相对误差/% 实验 数值模拟 相对误差/%
    0-0 524 560 6.9 0 0 0
    100-40 172 191 11.1 67.2 65.9 1.9
    200-60 123 126 2.4 76.5 77.5 1.0
    300-20 126 129 2.4 75.9 76.9 1.3
    300-60 109 113 3.7 79.2 79.8 0.8
    下载: 导出CSV

    表  4  数值模型中不同防护结构的几何参数

    Table  4.   Geometrical parameters of different protective structures in the numerical model

    屏障名称 壁厚
    A1/mm
    壁厚
    A2/mm
    迎爆面内圆
    半径R/mm
    屏障高度
    H/mm
    0 100 90 310
    PU/水 50 50 90 310
    水/PU 50 50 90 310
    下载: 导出CSV
  • [1] 毛益明, 方秦, 张亚栋, 等. 水体与混凝土防爆墙消波减爆作用对比研究 [J]. 兵工学报, 2009, 30(S2): 84–89.

    MAO Y M, FANG Q, ZHANG Y D, et al. Comparison investigation on mitigation effect of water and concrete explosion proof walls [J]. Acta Armamentarii, 2009, 30(S2): 84–89.
    [2] ZHU W H, XUE H L, ZHOU G Q, et al. Dynamic response of cylindrical explosive chambers to internal blast loading produced by a concentrated charge [J]. International Journal of Impact Engineering, 1997, 19(9): 831–845. DOI: 10.1016/S0734-743X(97)00022-5.
    [3] DOUGLAS K, ANDREW A, KATHERINE H, et al. A comparison of the blast & fragment mitigation performance of several structurally weak materials [C]// AIP Conference Proceedings 2007. Waikoloa: American Institute of Physics, 2007, 955(1): 951–954. DOI: 10.1063/1.2833286.
    [4] 宁建国, 王仲琦, 赵衡阳, 等. 爆炸冲击波绕流的数值模拟研究 [J]. 北京理工大学学报, 1999, 19(5): 543–547. DOI: 10.15918/j.tbit1001-0645.1999.05.003.

    NING J G, WANG Z Q, ZHAO H Y, et al. Study on the flow of the explosive shock wave around the wall numerical simulation [J]. Journal of Beijing Institute of Technology, 1999, 19(5): 543–547. DOI: 10.15918/j.tbit1001-0645.1999.05.003.
    [5] SHEN Y L, NING J G. Numberical simulation of the 2-d explosion field for the effect of protective wall’s shape [J]. Journal of Beijing Institute of Technology (English Edition), 2001(1): 39–44.
    [6] GELFAND B E, SILNIKOV M V, CHERNYSHOV M V. Modification of air blast loading transmission by foams and high density materials[C]// HANNEMANN K, SEILER F. In Proceeding of the 26th International Symposium on Shock Waves. Germany: Springer, 2007: 103–108. DOI: 10.1007/978-3-540-85168-4_15.
    [7] BAILEY J L, LINDSAY M S, SCHWER D A, et al. Blast mitigation using water mist: NRL/MR/6180-06-8933 [R]. Washington DC: Naval Research Laboratory, 2006.
    [8] BORNSTEIN H, PHILLIPS P, ANDERSON C. Evaluation of the blast mitigating effects of fluid containers [J]. International Journal of Impact Engineering, 2015, 75: 222–228. DOI: 10.1016/j.ijimpeng.2014.08.014.
    [9] ZHAO H Z, LAN K Y, CHONG O Y . Water mitigation effects on the detonations in confined chamber and tunnel system [J]. Shock and Vibration, 2001, 8(6): 349–355. DOI: 10.1155/2001/124019.
    [10] ZHU W, HUANG G Y, LIU C M, et al. Experimental and numerical investigation of a hollow cylindrical water barrier against internal blast loading [J]. Engineering Structures, 2018, 172: 789–806. DOI: 10.1016/j.engstruct.2018.06.062.
    [11] 蔡军锋, 傅孝忠, 易建政. 超高分子量聚乙烯-聚氨酯泡沫复合材料的抗爆实验与数值模拟 [J]. 高分子材料科学与工程, 2013, 29(11): 79–83. DOI: 10.16865/j.cnki.1000-7555.2013.11.019.

    CAI J F, FU X Z, YI J Z. Anti-explosion experiment and numerical simulation of UHMWPE-PUF composite [J]. Analysis of Polymers Polymer Materials Science and Engineering, 2013, 29(11): 79–83. DOI: 10.16865/j.cnki.1000-7555.2013.11.019.
    [12] 石少卿, 张湘冀, 刘颖芳, 等. 硬质聚氨酯泡沫塑料抗爆炸冲击作用的研究 [J]. 振动与冲击, 2005, 24(5): 56–59. DOI: 10.13465/j.cnki.jvs.2005.05.017.

    SHI S Q, ZHANG X Y, LIU Y F, et al. Studies on the properties of anti-detonation and anti-penetration of rigid polyurethane foam [J]. Journal of Vibration and Shock, 2005, 24(5): 56–59. DOI: 10.13465/j.cnki.jvs.2005.05.017.
    [13] 王海福, 冯顺山. 爆炸载荷下聚氨酯泡沫材料中冲击波压力特性 [J]. 爆炸与冲击, 1999, 19(1): 78–83.

    WANG H F, FENG S S. Properties of shock pressure caused by explosion loads in polyurethane foam [J]. Explosion and Shock Waves, 1999, 19(1): 78–83.
    [14] 陈网桦, 彭金华, 葛桂兰, 等. 聚氨酯泡沫塑料抗冲击性能的实验研究 [J]. 弹道学报, 1997(4): 88–92.

    CHEN W H, PENG J H, GE G L, et al. The experimental investigation of the shock-resistant properties of polyurethane foam plastics [J]. Journal of Ballistics, 1997(4): 88–92.
    [15] 卢子兴, 袁应龙. 高应变率加载下复合泡沫塑料的吸能特性及失效机理研究 [J]. 复合材料学报, 2002, 19(5): 114–117. DOI: 10.13801/j.cnki.fhclxb.2002.05.022.

    LU Z X, YUAN Y L. Investigation into the energy absorption and failure characteristics of syntactic foams at high strain rates [J]. Acta Materiae Compositae Sinica, 2002, 19(5): 114–117. DOI: 10.13801/j.cnki.fhclxb.2002.05.022.
    [16] ZHOU T Y, ZHANG P, XIAO W, et al. Experimental investigation on the performance of PVC foam core sandwich panels under air blast loading [J]. Composite Structures, 2019, 226: 111081. DOI: 10.1016/j.compstruct.2019.111081.
    [17] 曾祥, 刘彦, 许泽建, 等. 爆炸载荷作用下玻璃钢/硬质聚氨酯泡沫夹层结构抗冲击性能实验研究 [J]. 北京理工大学学报, 2021, 41(11): 1145–1153. DOI: 10.15918/j.tbit1001-0645.2021.036.

    ZENG X, LIU Y, XU Z J, et al. Experimental study on impact resistance of glass fiber reinforced plastic/rigid polyurethane foam sandwich structures under air blast loading [J]. Transactions of Beijing Institute of Technology, 2021, 41(11): 1145–1153. DOI: 10.15918/j.tbit1001-0645.2021.036.
    [18] 张勇. 聚氨酯泡沫铝复合结构抗爆吸能试验及数值模拟分析 [J]. 爆炸与冲击, 2022, 42(4): 045101. DOI: 10.11883/bzycj-2021-0182.

    ZHANG Y. Testing the antiknock energy absorption of polyurethane foam aluminum composite structure and numerical simulation [J]. Explosion and Shock Waves, 2022, 42(4): 045101. DOI: 10.11883/bzycj-2021-0182.
    [19] 李剑. 爆炸与防护 [M]. 第1版. 北京: 中国水利水电出版社, 2014: 258.
    [20] 闫伟杰. 水下爆炸数值模拟研究 [D]. 长沙: 国防科学技术大学, 2007: 17–21.
    [21] CHEN L, ZHANG L, FANG Q, et al. Performance based investigation on the construction of anti-blast water wall [J]. International Journal of Impact Engineering, 2015, 81: 17–33. DOI: 10.1016/j.ijimpeng.2015.03.003.
    [22] 年鑫哲, 严东晋, 张耀, 等. 水体防爆墙和混凝土防爆墙对爆炸冲击波的消减效应 [J]. 振动与冲击, 2014, 33(18): 214–220. DOI: 10.13465/j.cnki.jvs.2014.18.035.

    NIAN X Z, YAN D J, ZHANG Y, et al. Mitigation effects of explosion-proof water walls and explosion-proof concrete walls on blast shock wave [J]. Journal of Vibration and Shock, 2014, 33(18): 214–220. DOI: 10.13465/j.cnki.jvs.2014.18.035.
    [23] CHENG Y, ZHOU T, WANG H, et al. Numerical investigation on the dynamic response of foam-filled corrugated core sandwich panels subjected to air blast loading [J]. Journal of Sandwich Structures and Materials, 2019, 21(3): 838–864. DOI: 10.1177/1099636217700350.
    [24] 王宇新, 顾元宪, 孙明, 等. 冲击载荷作用下多孔材料复合结构防爆理论计算 [J]. 兵工学报, 2006, 27(2): 375–379. DOI: 10.3321/j.issn:1000-1093.2006.02.042.

    WANG Y X, GU Y X, SUN M, et al. Blast-resistant calculation of compound structure with porous material under impact load [J]. Acta Armamentarii, 2006, 27(2): 375–379. DOI: 10.3321/j.issn:1000-1093.2006.02.042.
    [25] 宋博, 胡时胜, 王礼立. 分层材料的不同排列次序对透射冲击波强度的影响 [J]. 兵工学报, 2000, 21(3): 272–274. DOI: 10.3321/j.issn:1000-1093.2000.03.021.

    SONG B, HU S S, WANG L L. Influence on the transmitted intensity of shock wave through different tactic orders of layered materials [J]. Acta Armamentarii, 2000, 21(3): 272–274. DOI: 10.3321/j.issn:1000-1093.2000.03.021.
    [26] 刘秀, 刘国胜, 郝建薇, 等. 阻燃硬质聚氨酯泡沫燃烧热值对阻燃性能的影响 [J]. 北京理工大学学报, 2015, 35(2): 197–202. DOI: 10.15918/j.tbit1001-0645.2015.02.017.

    LIU X, LIU G S, HAO J W, et al. Effect of heat of combustion on flame retardancy of rigid polyurethane foams [J]. Journal of Beijing Institute of Technology, 2015, 35(2): 197–202. DOI: 10.15918/j.tbit1001-0645.2015.02.017.
    [27] RESNYANSKY A, DELANEY T. Experimental study of blast mitigation in a water mist: DSTO technical report: DSTO-TR-1944 [R]. Australia: Defence Science and Technology Organisation Weapons Systems Division, 2006.
    [28] 洪武, 徐迎, 金丰年. 水体防爆机理研究进展 [J]. 防护工程, 2011, 33(3): 73–78.

    HONG W, XU Y, JIN F N. Development of blast-resistant water walls [J]. Protective Engineering, 2011, 33(3): 73–78.
    [29] CHAPMAN T C, ROSE T A, SMITH P D. Blast wave simulation using AUTODYN 2D: a parametric study [J]. International Journal of Impact Engineering, 1995, 16(5): 777–787. DOI: 10.1016/0734-743X(95)00012-Y.
    [30] CHENG M, HUNG K C, CHONG O Y. Numerical study of water mitigation effects on blast wave [J]. Shock Waves, 2005, 14(3): 217–223. DOI: 10.1007/s00193-005-0267-4.
    [31] YANG Y F, HE J M. Mechanical characterization of phenolic foams modified by short glass fibers and polyurethane prepolymer [J]. Polym Composite, 2015, 36(9): 1584–1589. DOI: 10.1002/pc.23066.
    [32] JIN M, HAO Y F, HAO H. Numerical study of fence type blast walls for blast load mitigation [J]. International Journal of Impact Engineering, 2019, 131: 238–255. DOI: 10.1016/j.ijimpeng.2019.05.007.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  72
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-30
  • 修回日期:  2023-07-11
  • 刊出日期:  2023-10-27

目录

    /

    返回文章
    返回