大体积混凝土水下接触爆炸破坏分区特征分析

蒋宏杰 卢文波 王高辉 刘义佳 王洋

蒋宏杰, 卢文波, 王高辉, 刘义佳, 王洋. 大体积混凝土水下接触爆炸破坏分区特征分析[J]. 爆炸与冲击, 2023, 43(10): 102202. doi: 10.11883/bzycj-2022-0415
引用本文: 蒋宏杰, 卢文波, 王高辉, 刘义佳, 王洋. 大体积混凝土水下接触爆炸破坏分区特征分析[J]. 爆炸与冲击, 2023, 43(10): 102202. doi: 10.11883/bzycj-2022-0415
JIANG Hongjie, LU Wenbo, WANG Gaohui, LIU Yijia, WANG Yang. On characteristics of failure zones in mass concrete subjected to underwater contact explosion[J]. Explosion And Shock Waves, 2023, 43(10): 102202. doi: 10.11883/bzycj-2022-0415
Citation: JIANG Hongjie, LU Wenbo, WANG Gaohui, LIU Yijia, WANG Yang. On characteristics of failure zones in mass concrete subjected to underwater contact explosion[J]. Explosion And Shock Waves, 2023, 43(10): 102202. doi: 10.11883/bzycj-2022-0415

大体积混凝土水下接触爆炸破坏分区特征分析

doi: 10.11883/bzycj-2022-0415
基金项目: 国家自然科学基金(51939008,52179140);湖北省自然科学基金杰出青年项目(2021CFA093)
详细信息
    作者简介:

    蒋宏杰(1996- ),男,博士研究生,Jhj-whu@whu.edu.cn

    通讯作者:

    卢文波(1968- ),男,博士,教授,博士生导师, wblu@whu.edu.cn

  • 中图分类号: O383.1

On characteristics of failure zones in mass concrete subjected to underwater contact explosion

  • 摘要: 为探究大体积混凝土水下接触爆炸破坏分区特征,基于水中爆炸冲击波与混凝土的相互作用过程分析,建立了综合考虑爆炸冲击波冲击破碎和爆轰产物准静态压拉致裂机制的混凝土爆炸破坏分区计算方法,并与有限元数值模拟和试验实测数据开展对比验证。结果表明:与空中接触爆炸相比,水对爆轰产物膨胀起抑制作用,使得爆炸荷载持时增加、作用于周围介质的冲量增大;采用建议的环向压碎判据计算破碎区,并将开裂区分为动态压裂、准静态压裂和准静态拉裂区的计算方法能够很好地预测混凝土水下接触爆炸破坏分区范围;炸药类型和起爆水深一定时,混凝土的抗拉强度和抗压强度比对开裂区范围起重要影响。
  • 图  1  混凝土水下接触爆炸破坏过程

    Figure  1.  Failure processes of concrete subjected to underwater contact explosion

    图  2  水在爆轰产物驱动下的运动

    Figure  2.  Motion of water driven by detonation products

    图  3  空中及水中接触爆炸荷载时程

    Figure  3.  Time histories of loads under air and underwater contact explosions

    图  4  混凝土水下接触爆炸破坏分区示意图

    Figure  4.  Schematic diagram of failure zones in concrete subjected to underwater contact explosion

    图  5  半无限介质水下接触爆炸准静态力学模型

    Figure  5.  A quasi-static mechanical model for semi-infinite medium subjected to underwater contact explosion

    图  6  不同强度特性混凝土水下接触爆炸开裂深度

    Figure  6.  Fracture depth of concrete subjected to underwater contact explosion with different strength characteristics

    图  7  水下接触爆炸全耦合数值模型

    Figure  7.  Fully coupled numerical model of underwater contact explosion

    图  8  水下接触爆炸冲击波传播过程

    Figure  8.  Propagation process of shock waves induced by underwater contact explosion

    图  9  混凝土水下接触爆炸破坏发展过程

    Figure  9.  Failure process of concrete subjected to underwater contact explosion

    图  10  图9(c)所示典型测点的应力及损伤时程曲线

    Figure  10.  Stress and damage time history curves of typical measuring points shown in Fig.9(c)

    图  11  混凝土水下接触爆炸破坏形态

    Figure  11.  Damage form of concrete subjected to underwater contact explosion

    图  12  不同起爆药量下混凝土水下接触爆炸破坏范围的模拟结果

    Figure  12.  Simulated damage range in concrete subjected to underwater contact explosion with different charge masses

    图  13  不同强度混凝土破坏范围预测值与数值模拟结果的对比

    Figure  13.  Comparison between predicted and numerical results of damage range in concrete with different strengths

    图  14  爆区及周围环境平面示意图[36]

    Figure  14.  Plane diagram of blasting area and surrounding environment[36]

    图  15  水下裸露爆破不同破坏深度所需药量的比较

    Figure  15.  Comparison of charge mass required by different damage depths of underwater exposed blasting

    表  1  水下接触爆炸混凝土界面冲击波参数

    Table  1.   Shock wave parameters on concrete interface in underwater contact explosion

    冲击波波系 ρ/(kg·m−3) u/(m·s−1) p/MPa us/(m·s−1)
    入射波 1600 1000 4800 4000
    透射波 2980 715 6304 3674
    下载: 导出CSV

    表  2  不同强度特性混凝土力学参数

    Table  2.   Mechanical parameters of concrete with different strength characteristics

    材料 密度ρc0/(kg·m−3) 弹性模量E/GPa 泊松比μ 抗压强度σc/MPa 抗拉强度σt/MPa
    C30混凝土[28] 2400 30.0 0.167 20.1 2.01
    高强混凝土[29] 2400 36.0 0.167 56.7 3.44
    下载: 导出CSV

    表  3  不同强度混凝土JH-2模型参数

    Table  3.   Parameters used in the JH-2 model for concrete with different strengths

    初始密度ρc0/(g·cm−3) 剪切模量G/GPa 体积模量K1/GPa 压力常数K2/GPa 压力常数K3/GPa Hugoniot弹性极限σHEL/GPa
    2.4 12.5 16.667 73.19 −236.2 0.45[31,33]
    完整强度常数A 完整强度指数N 应变率影响系数C 断裂强度常数B 断裂强度指数M 最大断裂强度比 $\sigma'_{{\rm{f,max}}} $
    0.9724[32] (1.074[34]) 0.8285[32] (0.8434]) 0.0095[26] 0.3241[32] (0.358[34]) 0.8285[32] (0.84[34]) 0.25
    初始损伤参数D1 初始损伤参数D2 最大静拉伸应力T/MPa 体胀常数β
    0.005 (0.012[34]) 0.5 −7.28[32] 1
    下载: 导出CSV

    表  4  水下裸露爆破破坏范围预测值与试验值的比较

    Table  4.   Comparison of damage ranges in underwater exposed blasting between prediction and test

    试验编号 药量/kg 破碎区深度
    试验值/m 预测值/m 误差/%
    1 0.3 0.15 0.19 21.2
    2 0.4 0.18 0.21 14.1
    3 0.5 0.20 0.23 11.4
    4 0.6 0.20 0.24 16.6
    5 0.6 0.20 0.24 16.6
    6 0.8 0.25 0.26 5.3
    7 0.8 0.25 0.26 5.3
    8 1.0 0.30 0.28 –5.5
    9 1.0 0.30 0.28 –5.5
    10 1.2 0.32 0.30 –5.9
    下载: 导出CSV
  • [1] SHU Y Z, WANG G H, LU W B, et al. Stability assessment method of damaged concrete gravity dams subjected to penetration explosion [J]. Engineering Structures, 2022, 267: 114683. DOI: 10.1016/j.engstruct.2022.114683.
    [2] WANG G H, LU W B, YANG G D, et al. A state-of-the-art review on blast resistance and protection of high dams to blast loads [J]. International Journal of Impact Engineering, 2020, 139: 103529. DOI: 10.1016/j.ijimpeng.2020.103529.
    [3] LI Q, WANG G H, LU W B, et al. Failure modes and effect analysis of concrete gravity dams subjected to underwater contact explosion considering the hydrostatic pressure [J]. Engineering Failure Analysis, 2018, 85: 62–76. DOI: 10.1016/j.engfailanal.2017.12.008.
    [4] DRUKOVANYI M F, KOMIR V M, MYACHINA N I, et al. Effect of the charge diameter and type of explosive on the size of the overcrushing zone during an explosion [J]. Soviet Mining Science, 1973, 9(5): 500–506. DOI: 10.1007/BF02501378.
    [5] 戴俊. 柱状装药爆破的岩石压碎圈与裂隙圈计算 [J]. 辽宁工程技术大学学报(自然科学版), 2001, 20(2): 144–147. DOI: 10.3969/J.ISSN.1008-0562.2001.02.005.

    DAI J. Calculation of radii of the broken and cracked areas in rock by a long charge explosion [J]. Journal of Liaoning Technical University (Natural Science), 2001, 20(2): 144–147. DOI: 10.3969/J.ISSN.1008-0562.2001.02.005.
    [6] DJORDJEVIC N. Two-component of blast fragmentation [C]//Proceedings of the Sixth International Symposium on Rock Fragmentation by Blasting-Fragblast. Johannesburg: South African Institute of Mining and Metallurgy, 1999: 213–219.
    [7] HUSTRULID W. Blasting principles for open pit mining-theoretical foundations [M]. Rotterdam: Balkema, 1999.
    [8] 冷振东, 卢文波, 陈明, 等. 岩石钻孔爆破粉碎区计算模型的改进 [J]. 爆炸与冲击, 2015, 35(1): 101–107. DOI: 10.11883/1001-1455(2015)01-0101-07.

    LENG Z D, LU W B, CHEN M, et al. Improved calculation model for the size of crushed zone around blasthole [J]. Explosion and Shock Waves, 2015, 35(1): 101–107. DOI: 10.11883/1001-1455(2015)01-0101-07.
    [9] 钱七虎. 岩石爆炸动力学的若干进展 [J]. 岩石力学与工程学报, 2009, 28(10): 1945–1968. DOI: 10.3321/j.issn:1000-6915.2009.10.001.

    QIAN Q H. Some advances in rock blasting dynamics [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 1945–1968. DOI: 10.3321/j.issn:1000-6915.2009.10.001.
    [10] ESEN S, ONEDERRA I, BILGIN H A. Modelling the size of the crushed zone around a blasthole [J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(4): 485–495. DOI: 10.1016/s1365-1609(03)00018-2.
    [11] FAR M S, WANG Y. Probabilistic analysis of crushed zone for rock blasting [J]. Computers and Geotechnics, 2016, 80: 290–300. DOI: 10.1016/j.compgeo.2016.08.025.
    [12] TU H, FUNG T C, TAN K H, et al. An analytical model to predict the compressive damage of concrete plates under contact detonation [J]. International Journal of Impact Engineering, 2019, 134: 103344. DOI: 10.1016/j.ijimpeng.2019.103344.
    [13] 林英松, 王莉, 丁雁生, 等. 饱和水泥试样被爆炸激波损伤破碎的尺度研究 [J]. 爆炸与冲击, 2008, 28(2): 186–192. DOI: 10.11883/1001-1455(2008)02-0186-07.

    LIN Y S, WANG L, DING Y S, et al. Experimental study of damage and fracture zone in cement sample subjected to exploding wave [J]. Explosion and Shock Waves, 2008, 28(2): 186–192. DOI: 10.11883/1001-1455(2008)02-0186-07.
    [14] 曾惠泉, 杨秀敏, 焦云鹏, 等. 触地爆炸流体弹塑性模型数值计算 [J]. 爆炸与冲击, 1982, 2(1): 45–54.

    ZENG H Q, YANG X M, JIAO Y P, et al. The hydrodynamic elasto-plastic model calculation of the contact-burst ground shock [J]. Explosion and Shock Waves, 1982, 2(1): 45–54.
    [15] 王明洋, 李杰. 爆炸与冲击中的非线性岩石力学问题III: 地下核爆炸诱发工程性地震效应的计算原理及应用 [J]. 岩石力学与工程学报, 2019, 38(4): 695–707. DOI: 10.13722/j.cnki.jrme.2018.1078.

    WANG M Y, LI J. Nonlinear mechanics problems in rock explosion and shock. Part III: the calculation principle of engineering seismic effects induced by underground nuclear explosion and its application [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 695–707. DOI: 10.13722/j.cnki.jrme.2018.1078.
    [16] 金辉, 李兵, 权琳, 等. 不同边界条件下炸药水中爆炸的能量输出结构 [J]. 爆炸与冲击, 2013, 33(3): 325–329. DOI: 10.11883/1001-1455(2013)03-0325-05.

    JIN H, LI B, QUAN L, et al. Configuration of explosive energy output in different underwater boundary conditions [J]. Explosion and Shock Waves, 2013, 33(3): 325–329. DOI: 10.11883/1001-1455(2013)03-0325-05.
    [17] ZHAO X H, WANG G H, LU W B, et al. Damage features of RC slabs subjected to air and underwater contact explosions [J]. Ocean Engineering, 2018, 147: 531–545. DOI: 10.1016/j.oceaneng.2017.11.007.
    [18] 刘靖晗, 唐廷, 韦灼彬, 等. 水下接触爆炸下沉箱码头毁伤效应 [J]. 爆炸与冲击, 2020, 40(11): 111407. DOI: 10.11883/bzycj-2019-0378.

    LIU J H, TANG T, WEI Z B, et al. Damage effects of a caisson wharf subjected to underwater contact explosion [J]. Explosion and Shock Waves, 2020, 40(11): 111407. DOI: 10.11883/bzycj-2019-0378.
    [19] YANG G D, FAN Y, WANG G H, et al. Blast resistance of air-backed RC slab against underwater contact explosion [J/OL]. Defence Technology, 2022(2022-11-17). https://www.sciencedirect.com/science/article/pii/S2214914722002422. DOI: 10.1016/j.dt.2022.11.004.
    [20] HENRYCH J. 爆炸动力学及其应用 [M]. 熊建国, 译. 北京: 科学出版社, 1987: 73–82.
    [21] 哈努卡耶夫. 矿岩爆破物理过程 [M]. 刘殿中, 译. 北京: 冶金工业出版社, 1980: 46–53, 81–82.
    [22] 詹发民, 姜涛, 黄雪峰. 水下爆破 [M]. 武汉: 湖北科学技术出版社, 2021: 227–230.
    [23] 王永刚, 张远平, 王礼立. C30混凝土冲击绝热关系和Grüneisen型状态方程的实验研究 [J]. 物理学报, 2008, 57(12): 7789–7793. DOI: 10.3321/J.ISSN:1000-3290.2008.12.061.

    WANG Y G, ZHANG Y P, WANG L L. Experimental study on the shock Hugoniot relationship and the Grüneisen-type equation of state for C30 concrete [J]. Acta Physica Sinica, 2008, 57(12): 7789–7793. DOI: 10.3321/J.ISSN:1000-3290.2008.12.061.
    [24] 王礼立, 任辉启, 虞吉林, 等. 非线性应力波传播理论的发展及应用 [J]. 固体力学学报, 2013, 34(3): 217–240. DOI: 10.3969/j.issn.0254-7805.2013.03.001.

    WANG L L, REN H Q, YU J L, et al. Development and application of the theory of nonlinear stress wave propagation [J]. Chinese Journal of Solid Mechanics, 2013, 34(3): 217–240. DOI: 10.3969/j.issn.0254-7805.2013.03.001.
    [25] 王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005: 232–234.
    [26] 董毓利, 谢和平, 赵鹏. 不同应变率下混凝土受压全过程的实验研究及其本构模型 [J]. 水利学报, 1997(7): 72–77. DOI: 10.13243/J.CNKI.SLXB.1997.07.013.

    DONG Y L, XIE H P, ZHAO P. Experimental study and constitutive model on concrete under compression with different strain rate [J]. Journal of Hydraulic Engineering, 1997(7): 72–77. DOI: 10.13243/J.CNKI.SLXB.1997.07.013.
    [27] 曹扬悦也, 蒋志刚, 谭清华, 等. 基于Hoek-Brown准则的混凝土-岩石类靶侵彻模型 [J]. 振动与冲击, 2017, 36(5): 48–53,60. DOI: 10.13465/j.cnki.jvs.2017.05.008.

    CAO Y Y Y, JIANG Z G, TAN Q H, et al. Penetration model for concrete-rock targets based on Hoek-Brown criterion [J]. Journal of Vibration and Shock, 2017, 36(5): 48–53,60. DOI: 10.13465/j.cnki.jvs.2017.05.008.
    [28] 中华人民共和国水利部. 水工混凝土结构设计规范: SL 191—2008 [S]. 北京: 中国水利水电出版社, 2008.
    [29] 刘增晨, 蒋利, 成莞莞, 等. 高强混凝土抗压抗拉强度的尺寸效应 [J]. 科学技术与工程, 2015, 15(30): 209–213. DOI: 10.3969/j.issn.1671-1815.2015.30.039.

    LIU Z C, JIANG L, CHENG W W, et al. The dimensional effect of compressive strength and splitting tensile strength of high strength concrete [J]. Science Technology and Engineering, 2015, 15(30): 209–213. DOI: 10.3969/j.issn.1671-1815.2015.30.039.
    [30] 张艳红, 胡晓, 杨陈, 等. 大坝混凝土强度参数的统计分析 [J]. 水力发电学报, 2015, 34(6): 169–175.

    ZHANG Y H, HU X, YANG C, et al. Statistical analysis of dam concrete strength parameters [J]. Journal of Hydroelectric Engineering, 2015, 34(6): 169–175.
    [31] ROSENBERG Z. On the relation between the Hugoniot elastic limit and the yield strength of brittle materials [J]. Journal of Applied Physics, 1993, 74(1): 752–753. DOI: 10.1063/1.355247.
    [32] 谢和平, 董毓利, 李世平. 不同围压下混凝土受压弹塑性损伤本构模型的研究 [J]. 煤炭学报, 1996, 21(3): 265–270. DOI: 10.3321/j.issn:0253-9993.1996.03.009.

    XIE H P, DONG Y L, LI S P. Study of a constitutive model of elasto-plastic damage of concrete in axial compression test under different pressures [J]. Journal of China Coal Society, 1996, 21(3): 265–270. DOI: 10.3321/j.issn:0253-9993.1996.03.009.
    [33] KIPP M E, CHHABILDAS L C, REINHART W D. Elastic shock response and spall strength of concrete [J]. AIP Conference Proceedings, 1998, 429(1): 557–560. DOI: 10.1063/1.55664.
    [34] GUO Y B, GAO G F, JING L, et al. Dynamic properties of mortar in high-strength concrete [J]. International Journal of Impact Engineering, 2022, 165: 104216. DOI: 10.1016/j.ijimpeng.2022.104216.
    [35] ZAMYSHLYAEV B V, YAKOVLEV Y S. Dynamic loads in underwater explosion: AD-757183 [R]. Washington: Naval Intelligence Support Center, 1973: 119–120.
    [36] 陈建华. 层状岩体水下裸露爆破的药量计算 [J]. 矿业研究与开发, 1995(3): 54–56.

    CHEN J H. The calculation of explosive weight in underwater exposed blasting of stratified rock [J]. Mining Research and Development, 1995(3): 54–56.
    [37] 中华人民共和国水利电力部. 水工钢筋混凝土结构设计规范(试行) : SDJ 20—78 [S]. 北京: 水利电力出版社, 1979.
    [38] 中国人民解放军总参谋部兵种部. 军用爆破教范 [M]. 北京: 解放军出版社, 1998: 206.
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  211
  • HTML全文浏览量:  69
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-28
  • 修回日期:  2023-09-16
  • 刊出日期:  2023-10-27

目录

    /

    返回文章
    返回