[1] |
MERIANS A N, SPILLER T, HARPAZ-ROTEM I, et al. Post-traumatic stress disorder [J]. Medical Clinics of North America, 2023, 107(1): 85–99. DOI: 10.1016/j.mcna.2022.04.003.
|
[2] |
LONNEN E, PASKELL R. Gender, sex and complex PTSD clinical presentation: a systematic review [J]. European Journal of Psychotraumatology, 2024, 15(1): 2320994. DOI: 10.1080/20008066.2024.2320994.
|
[3] |
PETEREIT-HAACK G, BOLM-AUDORFF U, ROMERO STARKE K, et al. Occupational risk for post-traumatic stress disorder and trauma-related depression: a systematic review with meta-analysis [J]. International Journal of Environmental Research and Public Health, 2020, 17(24): 9369. DOI: 10.3390/IJERPH17249369.
|
[4] |
BURBACK L, BRÉMAULT-PHILLIPS S, NIJDAM M J, et al. Treatment of posttraumatic stress disorder: a state-of-the-art review [J]. Current Neuropharmacology, 2024, 22(4): 557–635. DOI: 10.2174/1570159X21666230428091433.
|
[5] |
DIAMOND P R, AIRDRIE J N, HILLER R, et al. Change in prevalence of post-traumatic stress disorder in the two years following trauma: a meta-analytic study [J]. European Journal of Psychotraumatology, 2022, 13(1): 2066456. DOI: 10.1080/20008198.2022.2066456.
|
[6] |
KOENEN K C, RATANATHARATHORN A, NG L, et al. Posttraumatic stress disorder in the world mental health surveys [J]. Psychological Medicine, 2017, 47(13): 2260–2274. DOI: 10.1017/S0033291717000708.
|
[7] |
JOHNSON R J, ANTONACCIO O, BOTCHKOVAR E, et al. War trauma and PTSD in Ukraine’s civilian population: comparing urban-dwelling to internally displaced persons [J]. Social Psychiatry and Psychiatric Epidemiology, 2022, 57(9): 1807–1816. DOI: 10.1007/s00127-021-02176-9.
|
[8] |
BEN-EZRA M, GOODWIN R, LESHEM E, et al. PTSD symptoms among civilians being displaced inside and outside the Ukraine during the 2022 Russian invasion [J]. Psychiatry Research, 2023, 320: 115011. DOI: 10.1016/j.psychres.2022.115011.
|
[9] |
KARATZIAS T, SHEVLIN M, BEN-EZRA M, et al. War exposure, posttraumatic stress disorder, and complex posttraumatic stress disorder among parents living in Ukraine during the Russian war [J]. Acta psychiatrica Scandinavica, 2023, 147(3): 276–285. DOI: 10.1111/acps.13529.
|
[10] |
FINLAY S E, EARBY M, BAKER D J, et al. Explosions and human health: the long-term effects of blast injury [J]. Prehospital and Disaster Medicine, 2012, 27(4): 385–391. DOI: 10.1017/S1049023X12000891.
|
[11] |
MAALOUF F T, HAIDAR R, MANSOUR F, et al. Anxiety, depression and PTSD in children and adolescents following the Beirut port explosion [J]. Journal of Affective Disorders, 2022, 302: 58–65. DOI: 10.1016/j.jad.2022.01.086.
|
[12] |
PEREZ-GARCIA G, GAMA SOSA M A, DE GASPERI R, et al. Chronic post-traumatic stress disorder-related traits in a rat model of low-level blast exposure [J]. Behavioural Brain Research, 2018, 340: 117–125. DOI: 10.1016/j.bbr.2016.09.061.
|
[13] |
SU Y J. PTSD and depression in adult burn patients three months postburn: the contribution of psychosocial factors [J]. General Hospital Psychiatry, 2023, 82: 33–40. DOI: 10.1016/j.genhosppsych.2023.03.004.
|
[14] |
MAERCKER A, CLOITRE M, BACHEM R, et al. Complex post-traumatic stress disorder [J]. The Lancet, 2022, 400(10345): 60–72. DOI: 10.1016/S0140-6736(22)00821-2.
|
[15] |
NANAVATI H D, AREVALO A, MEMON A A, et al. Associations between posttraumatic stress and stroke: a systematic review and meta-analysis [J]. Journal of Traumatic Stress, 2023, 36(2): 259–271. DOI: 10.1002/jts.22925.
|
[16] |
VAN DEN BERK CLARK C, KANSARA V, FEDOROVA M, et al. How does PTSD treatment affect cardiovascular, diabetes and metabolic disease risk factors and outcomes? A systematic review [J]. Journal of Psychosomatic Research, 2022, 157: 110793. DOI: 10.1016/j.jpsychores.2022.110793.
|
[17] |
DAVIS L L, SCHEIN J, CLOUTIER M, et al. The economic burden of posttraumatic stress disorder in the United States from a societal perspective [J]. The Journal of Clinical Psychiatry, 2022, 83(3): 21m14116. DOI: 10.4088/JCP.21M14116.
|
[18] |
HANSEN M, ARMOUR C, MCGLINCHEY E, et al. Investigating the DSM-5 and the ICD-11 PTSD symptoms using network analysis across two distinct samples [J]. Psychological Trauma: Theory, Research, Practice, and Policy, 2023, 15(5): 757–766. DOI: 10.1037/tra0001281.
|
[19] |
SKÓRZEWSKA A, LEHNER M, WISŁOWSKA-STANEK A, et al. Individual susceptibility or resistance to posttraumatic stress disorder-like behaviours [J]. Behavioural Brain Research, 2020, 386: 112591. DOI: 10.1016/j.bbr.2020.112591.
|
[20] |
JAMES L M, GEORGOPOULOS A P. Immunogenetics of posttraumatic stress disorder (PTSD) in women veterans [J]. Brain, Behavior, & Immunity - Health, 2022, 26: 100567. DOI: 10.1016/j.bbih.2022.100567.
|
[21] |
VACCARINO V, SHAH A J, MONCAYO V, et al. Posttraumatic stress disorder, myocardial perfusion, and myocardial blood flow: a longitudinal twin study [J]. Biological Psychiatry, 2022, 91(7): 615–625. DOI: 10.1016/j.biopsych.2021.09.016.
|
[22] |
CUSACK S E, MAIHOFER A X, BUSTAMANTE D, et al. Genetic influences on testosterone and PTSD [J]. Journal of Psychiatric Research, 2024, 174: 8–11. DOI: 10.1016/j.jpsychires.2024.04.002.
|
[23] |
BAGHAEI A, ZOSHK M Y, HOSSEINI M, et al. Prominent genetic variants and epigenetic changes in post-traumatic stress disorder among combat veterans [J]. Molecular Biology Reports, 2024, 51(1): 325. DOI: 10.1007/s11033-024-09276-0.
|
[24] |
TSEILIKMAN V E, TSEILIKMAN O B, PASHKOV A A, et al. Mechanisms of susceptibility and resilience to PTSD: role of dopamine metabolism and BDNF expression in the hippocampus [J]. International Journal of Molecular Sciences, 2022, 23(23): 14575. DOI: 10.3390/ijms232314575.
|
[25] |
LE TRAN N, WANG Y, NIE G Y. Podocalyxin in normal tissue and epithelial cancer [J]. Cancers, 2021, 13(12): 2863. DOI: 10.3390/CANCERS13122863.
|
[26] |
MEHLIG K, FORAITA R, NAGRANI R, et al. Genetic associations vary across the spectrum of fasting serum insulin: results from the European IDEFICS/I. Family children's cohort [J]. Diabetologia, 2023, 66(10): 1914–1924. DOI: 10.1007/s00125-023-05957-w.
|
[27] |
SANDERS S S, HERNANDEZ L M, SOH H, et al. The palmitoyl acyltransferase ZDHHC14 controls Kv1-family potassium channel clustering at the axon initial segment [J]. eLife, 2020, 9: e56058. DOI: 10.7554/eLife.56058.
|
[28] |
NIEVERGELT C M, MAIHOFER A X, KLENGEL T, et al. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci [J]. Nature Communications, 2019, 10(1): 4558. DOI: 10.1038/s41467-019-12576-w.
|
[29] |
PARTHASARATHY R, SANTIAGO F, MCCLUSKEY P, et al. The microbiome in HLA-B27-associated disease: implications for acute anterior uveitis and recommendations for future studies [J]. Trends in Microbiology, 2023, 31(2): 142–158. DOI: 10.1016/j.tim.2022.08.008.
|
[30] |
ZHANG X Y, HAN Y, LIU X H, et al. Assessment of genetic variants in D2 dopamine receptor (DRD2) gene as risk factors for post-traumatic stress disorder (PTSD) and major depressive disorder (MDD): a systematic review and meta-analysis [J]. Journal of Affective Disorders, 2023, 328: 312–323. DOI: 10.1016/j.jad.2023.02.001.
|
[31] |
STEIN M B, LEVEY D F, CHENG Z S, et al. Genome-wide association analyses of post-traumatic stress disorder and its symptom subdomains in the million veteran program [J]. Nature Genetics, 2021, 53(2): 174–184. DOI: 10.1038/s41588-020-00767-x.
|
[32] |
POLIMANTI R, WENDT F R. Posttraumatic stress disorder: from gene discovery to disease biology [J]. Psychological Medicine, 2021, 51(13): 2178–2188. DOI: 10.1017/S0033291721000210.
|
[33] |
DEL CASALE A, FERRACUTI S, BARBETTI A S, et al. Grey matter volume reductions of the left hippocampus and amygdala in PTSD: a coordinate-based meta-analysis of magnetic resonance imaging studies [J]. Neuropsychobiology, 2022, 81(4): 257–264. DOI: 10.1159/000522003.
|
[34] |
CHEN L W, SUN D L, DAVIS S L, et al. Smaller hippocampal CA1 subfield volume in posttraumatic stress disorder [J]. Depression and Anxiety, 2018, 35(11): 1018–1029. DOI: 10.1002/da.22833.
|
[35] |
MOREY R A, CLARKE E K, HASWELL C C, et al. Amygdala nuclei volume and shape in military veterans with posttraumatic stress disorder [J]. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020, 5(3): 281–290. DOI: 10.1016/j.bpsc.2019.11.016.
|
[36] |
SZESZKO P R, BIERER L M, BADER H N, et al. Cingulate and hippocampal subregion abnormalities in combat-exposed veterans with PTSD [J]. Journal of Affective Disorders, 2022, 311: 432–439. DOI: 10.1016/j.jad.2022.05.081.
|
[37] |
ALEXANDRA KREDLOW M, FENSTER R J, LAURENT E S, et al. Prefrontal cortex, amygdala, and threat processing: implications for PTSD [J]. Neuropsychopharmacology, 2022, 47(1): 247–259. DOI: 10.1038/s41386-021-01155-7.
|
[38] |
HINOJOSA C A, GEORGE G C, BEN-ZION Z. Neuroimaging of posttraumatic stress disorder in adults and youth: progress over the last decade on three leading questions of the field [J]. Molecular Psychiatry, 2024, 29(10): 3223–3244. DOI: 10.1038/S41380-024-02558-W.
|
[39] |
AKIKI T J, AVERILL C L, WROCKLAGE K M, et al. The association of PTSD symptom severity with localized hippocampus and amygdala abnormalities [J]. Chronic Stress, 2017(1): 2470547017724069. DOI: 10.1177/2470547017724069.
|
[40] |
MISAKI M, PHILLIPS R, ZOTEV V, et al. Real-time fMRI amygdala neurofeedback positive emotional training normalized resting-state functional connectivity in combat veterans with and without PTSD: a connectome-wide investigation [J]. NeuroImage: Clinical, 2018, 20: 543–555. DOI: 10.1016/j.nicl.2018.08.025.
|
[41] |
HARIS E M, BRYANT R A, WILLIAMSON T, et al. Functional connectivity of amygdala subnuclei in PTSD: a narrative review [J]. Molecular Psychiatry, 2023, 28(9): 3581–3594. DOI: 10.1038/s41380-023-02291-w.
|
[42] |
NICHOLSON A A, RABELLINO D, DENSMORE M, et al. Intrinsic connectivity network dynamics in PTSD during amygdala downregulation using real-time fMRI neurofeedback: a preliminary analysis [J]. Human Brain Mapping, 2018, 39(11): 4258–4275. DOI: 10.1002/hbm.24244.
|
[43] |
MISAKI M, PHILLIPS R, ZOTEV V, et al. Brain activity mediators of PTSD symptom reduction during real-time fMRI amygdala neurofeedback emotional training [J]. NeuroImage: Clinical, 2019, 24: 102047. DOI: 10.1016/j.nicl.2019.102047.
|
[44] |
DOSSI G, DELVECCHIO G, PRUNAS C, et al. Neural bases of cognitive impairments in post-traumatic stress disorders: a mini-review of functional magnetic resonance imaging findings [J]. Frontiers in Psychiatry, 2020, 11: 176. DOI: 10.3389/fpsyt.2020.00176.
|
[45] |
JAGGER-RICKELS A, STUMPS A, ROTHLEIN D, et al. Impaired executive function exacerbates neural markers of posttraumatic stress disorder [J]. Psychological Medicine, 2022, 52(16): 3985–3998. DOI: 10.1017/S0033291721000842.
|
[46] |
AKIKI T J, AVERILL C L, ABDALLAH C G. A network-based neurobiological model of PTSD: evidence from structural and functional neuroimaging studies [J]. Current Psychiatry Reports, 2017, 19(11): 81. DOI: 10.1007/s11920-017-0840-4.
|
[47] |
KEEFE J R, SUAREZ-JIMENEZ B, ZHU X, et al. Elucidating behavioral and functional connectivity markers of aberrant threat discrimination in PTSD [J]. Depression and Anxiety, 2022, 39(12): 891–901. DOI: 10.1002/da.23295.
|
[48] |
CROZIER J C, WANG L H, HUETTEL S A, et al. Neural correlates of cognitive and affective processing in maltreated youth with posttraumatic stress symptoms: does gender matter? [J]. Development and Psychopathology, 2014, 26(2): 491–513. DOI: 10.1017/S095457941400008X.
|
[49] |
SUO X L, ZUO C, LAN H, et al. Multilayer network analysis of dynamic network reconfiguration in adults with posttraumatic stress disorder [J]. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2023, 8(4): 452–61. DOI: 10.1016/j.bpsc.2022.09.003.
|
[50] |
WANG X, XIE H, CHEN T, et al. Cortical volume abnormalities in posttraumatic stress disorder: an ENIGMA-psychiatric genomics consortium PTSD workgroup mega-analysis [J]. Molecular Psychiatry, 2021, 26(8): 4331–4343. DOI: 10.1038/s41380-020-00967-1.
|
[51] |
LOGUE M W, VAN ROOIJ S J H, DENNIS E L, et al. Smaller hippocampal volume in posttraumatic stress disorder: a multisite ENIGMA-PGC study: subcortical volumetry results from posttraumatic stress disorder consortia [J]. Biological Psychiatry, 2018, 83(3): 244–253. DOI: 10.1016/j.biopsych.2017.09.006.
|
[52] |
DENNIS E L, DISNER S G, FANI N, et al. Altered white matter microstructural organization in posttraumatic stress disorder across 3047 adults: results from the PGC-ENIGMA PTSD consortium [J]. Molecular Psychiatry, 2021, 26(8): 4315–4330. DOI: 10.1038/s41380-019-0631-x.
|
[53] |
BEUTLER S, MERTENS Y L, LADNER L, et al. Trauma-related dissociation and the autonomic nervous system: a systematic literature review of psychophysiological correlates of dissociative experiencing in PTSD patients [J]. European Journal of Psychotraumatology, 2022, 13(2): 2132599. DOI: 10.1080/20008066.2022.2132599.
|
[54] |
CAMPBELL A A, WISCO B E, SILVIA P J, et al. Resting respiratory sinus arrhythmia and posttraumatic stress disorder: a meta-analysis [J]. Biological Psychology, 2019, 144: 125–135. DOI: 10.1016/j.biopsycho.2019.02.005.
|
[55] |
CAMPBELL A A, WISCO B E. Respiratory sinus arrhythmia reactivity in anxiety and posttraumatic stress disorder: a review of literature [J]. Clinical Psychology Review, 2021, 87: 102034. DOI: 10.1016/j.cpr.2021.102034.
|
[56] |
SCHNEIDER M, SCHWERDTFEGER A. Autonomic dysfunction in posttraumatic stress disorder indexed by heart rate variability: a meta-analysis [J]. Psychological Medicine, 2020, 50(12): 1937–1948. DOI: 10.1017/S003329172000207X.
|
[57] |
PARK J E, LEE J Y, KANG S H, et al. Heart rate variability of chronic posttraumatic stress disorder in the Korean veterans [J]. Psychiatry Research, 2017, 255: 72–77. DOI: 10.1016/j.psychres.2017.05.011.
|
[58] |
WILTSHIRE C N, KOURI N, WANNA C P, et al. Resting heart rate associations with violence exposure and posttraumatic stress symptoms: sex differences in children [J]. Biology of Sex Differences, 2024, 15(1): 28. DOI: 10.1186/s13293-024-00606-2.
|
[59] |
SHEIKH S A A, SHAH A J, BREMNER J D, et al. Impedance cardiogram based exploration of cardiac mechanisms in post-traumatic stress disorder during trauma recall [J]. Psychophysiology, 2024, 61(4): e14488. DOI: 10.1111/psyp.14488.
|
[60] |
LORI A, SCHULTEBRAUCKS K, GALATZER-LEVY I, et al. Transcriptome-wide association study of post-trauma symptom trajectories identified GRIN3B as a potential biomarker for PTSD development [J]. Neuropsychopharmacology, 2021, 46(10): 1811–1820. DOI: 10.1038/s41386-021-01073-8.
|
[61] |
CHEVALIER C M, KRAMPERT L, SCHRECKENBACH M, et al. MMP9 mRNA is a potential diagnostic and treatment monitoring marker for PTSD: Evidence from mice and humans [J]. European Neuropsychopharmacology, 2021, 51: 20–32. DOI: 10.1016/j.euroneuro.2021.04.014.
|
[62] |
VISHNOI A, RANI S. miRNA biogenesis and regulation of diseases: an updated overview [M]//RANI S. MicroRNA Profiling: Methods and Protocols. New York: Springer, 2023: 1-12. DOI: 10.1007/978-1-0716-2823-2_1.
|
[63] |
DIENER C, KELLER A, MEESE E. Emerging concepts of miRNA therapeutics: from cells to clinic [J]. Trends in Genetics, 2022, 38(6): 613–626. DOI: 10.1016/j.tig.2022.02.006.
|
[64] |
DU X Z, LV J Z, FENG J P, et al. Plasma exosomes lncRNA-miRNA-mRNA network construction and its diagnostic efficacy identification in first-episode schizophrenia [J]. BMC Psychiatry, 2023, 23(1): 611. DOI: 10.1186/s12888-023-05052-9.
|
[65] |
PACCOSI E, PROIETTI-DE-SANTIS L. Parkinson's disease: from genetics and epigenetics to treatment, a miRNA-based strategy [J]. International Journal of Molecular Sciences, 2023, 24(11): 9547. DOI: 10.3390/IJMS24119547.
|
[66] |
GUPTA S, GULERIA R S, SZABO Y Z. MicroRNAs as biomarker and novel therapeutic target for posttraumatic stress disorder in veterans [J]. Psychiatry Research, 2021, 305: 114252. DOI: 10.1016/j.psychres.2021.114252.
|
[67] |
BAM M, YANG X, ZUMBRUN E E, et al. Decreased AGO2 and DCR1 in PBMCs from war veterans with PTSD leads to diminished miRNA resulting in elevated inflammation [J]. Translational Psychiatry, 2017, 7(8): e1222. DOI: 10.1038/tp.2017.185.
|
[68] |
MARTIN C G, KIM H, YUN S, et al. Circulating miRNA associated with posttraumatic stress disorder in a cohort of military combat veterans [J]. Psychiatry Research, 2017, 251: 261–265. DOI: 10.1016/j.psychres.2017.01.081.
|
[69] |
RIM E Y, CLEVERS H, NUSSE R. The Wnt pathway: from signaling mechanisms to synthetic modulators [J]. Annual Review of Biochemistry, 2022, 91: 571–598. DOI: 10.1146/annurev-biochem-040320-103615.
|
[70] |
ASLEH K, DERY V, TAYLOR C, et al. Extracellular vesicle-based liquid biopsy biomarkers and their application in precision immuno-oncology [J]. Biomarker Research, 2023, 11(1): 99. DOI: 10.1186/s40364-023-00540-2.
|
[71] |
BERUMEN SÁNCHEZ G, BUNN K E, PUA H H, et al. Extracellular vesicles: mediators of intercellular communication in tissue injury and disease [J]. Cell Communication and Signaling, 2021, 19(1): 104. DOI: 10.1186/s12964-021-00787-y.
|
[72] |
GARCIA-MARTIN R, WANG G X, BRANDÃO B B, et al. MicroRNA sequence codes for small extracellular vesicle release and cellular retention [J]. Nature, 2022, 601(7893): 446–451. DOI: 10.1038/s41586-021-04234-3.
|
[73] |
GUEDES V A, LAI C, DEVOTO C, et al. Extracellular vesicle proteins and MicroRNAs are linked to chronic post-traumatic stress disorder symptoms in service members and veterans with mild traumatic brain injury [J]. Frontiers in Pharmacology, 2021, 12: 745348. DOI: 10.3389/fphar.2021.745348.
|
[74] |
LEE M Y, BAXTER D, SCHERLER K, et al. Distinct profiles of cell-free MicroRNAs in plasma of veterans with post-traumatic stress disorder [J]. Journal of Clinical Medicine, 2019, 8(7): 963. DOI: 10.3390/jcm8070963.
|
[75] |
ZHANG L, HU X Z, LI X X, et al. Potential chemokine biomarkers associated with PTSD onset, risk and resilience as well as stress responses in US military service members [J]. Translational Psychiatry, 2020, 10(1): 31. DOI: 10.1038/s41398-020-0693-1.
|
[76] |
XU M, LIN Z Q, SIEGEL C E, et al. Screening for PTSD and TBI in veterans using routine clinical laboratory blood tests [J]. Translational Psychiatry, 2023, 13(1): 64. DOI: 10.1038/s41398-022-02298-x.
|
[77] |
MENG X, LIU D, GUAN Y. Advances in the application of label-free quantitative proteomics techniques in malignancy research [J]. Biomedical Chromatography, 2023, 37(7): e5667. DOI: 10.1002/bmc.5667.
|
[78] |
MUHIE S, GAUTAM A, YANG R T, et al. Molecular signatures of post-traumatic stress disorder in war-zone-exposed veteran and active-duty soldiers [J]. Cell Reports Medicine, 2023, 4(5): 101045. DOI: 10.1016/j.xcrm.2023.101045.
|
[79] |
KUAN P F, CLOUSTON S, YANG X H, et al. Molecular linkage between post-traumatic stress disorder and cognitive impairment: a targeted proteomics study of world trade center responders [J]. Translational Psychiatry, 2020, 10(1): 269. DOI: 10.1038/s41398-020-00958-4.
|
[80] |
WASZCZUK M A, KUAN P F, YANG X H, et al. Discovery and replication of blood-based proteomic signature of PTSD in 9/11 responders [J]. Translational Psychiatry, 2023, 13(1): 8. DOI: 10.1038/s41398-022-02302-4.
|
[81] |
ROBLES T F, RÜNGER D, SUMNER J A, et al. Salivary inflammatory biomarkers as a predictor of post-traumatic stress disorder and depressive symptom severity in trauma patients: a prospective study [J]. Brain, Behavior, and Immunity, 2024, 119: 792–800. DOI: 10.1016/j.bbi.2024.05.011.
|
[82] |
ESWARAPPA M, NEYLAN T C, WHOOLEY M A, et al. Inflammation as a predictor of disease course in posttraumatic stress disorder and depression: a prospective analysis from the mind your heart study [J]. Brain, Behavior, and Immunity, 2019, 75: 220–227. DOI: 10.1016/j.bbi.2018.10.012.
|
[83] |
KIM B K, FONDA J R, HAUGER R L, et al. Composite contributions of cerebrospinal fluid GABAergic neurosteroids, neuropeptide Y and interleukin-6 to PTSD symptom severity in men with PTSD [J]. Neurobiology of Stress, 2020, 12: 100220. DOI: 10.1016/j.ynstr.2020.100220.
|