求解双曲守恒律方程的WENO型熵相容格式

程晓晗 封建湖 聂玉峰

程晓晗, 封建湖, 聂玉峰. 求解双曲守恒律方程的WENO型熵相容格式[J]. 爆炸与冲击, 2014, 34(4): 501-507. doi: 10.11883/1001-1455(2014)04-0501-07
引用本文: 程晓晗, 封建湖, 聂玉峰. 求解双曲守恒律方程的WENO型熵相容格式[J]. 爆炸与冲击, 2014, 34(4): 501-507. doi: 10.11883/1001-1455(2014)04-0501-07
Cheng Xiao-han, Feng Jian-hu, Nie Yu-feng. WENO type entropy consistent scheme for hyperbolic conservation laws[J]. Explosion And Shock Waves, 2014, 34(4): 501-507. doi: 10.11883/1001-1455(2014)04-0501-07
Citation: Cheng Xiao-han, Feng Jian-hu, Nie Yu-feng. WENO type entropy consistent scheme for hyperbolic conservation laws[J]. Explosion And Shock Waves, 2014, 34(4): 501-507. doi: 10.11883/1001-1455(2014)04-0501-07

求解双曲守恒律方程的WENO型熵相容格式

doi: 10.11883/1001-1455(2014)04-0501-07
基金项目: 国家自然科学基金项目(11171043);中央高校基本科研业务费专项项目(CHD2010JC060)
详细信息
    作者简介:

    程晓晗(1987—), 男, 博士研究生

  • 中图分类号: O354;O242

WENO type entropy consistent scheme for hyperbolic conservation laws

Funds: Supported bythe National Natural Science Foundation of China (11171043)
More Information
  • 摘要: 通过在单元交界面处进行高阶WENO重构,得到了一种求解双曲型守恒律方程的WENO型熵相容格式。用该格式对一维Burgers方程和Euler方程进行数值模拟,结果表明,该格式具有高精度、基本无振荡性等特点。
  • 图  1  无黏Burgers方程间断初值问题

    Figure  1.  Discontinuous initial value problem of Burgers equation

    图  2  一维Euler方程Sod激波管问题

    Figure  2.  Sod shock tube problem of 1D Euler equation

    图  3  一维Euler方程低密度流问题

    Figure  3.  Low density problem of 1D Euler equation

    图  4  一维Euler方程强稀疏波问题

    Figure  4.  Density of strong expansion problem of 1D Euler equation

    表  1  EC-WENO格式的数值精度

    Table  1.   Numerical accuracy of EC-WENO scheme

    网格数L1精度阶L精度阶
    201.420 0×10-21.020 0×10-2
    404.653 5×10-44.931 43.859 9×10-44.723 9
    801.447 5×10-55.006 71.310 2×10-54.880 7
    1604.515 7×10-75.002 54.137 0×10-74.985 1
    下载: 导出CSV
  • [1] Roe P L. Approximate Rieman solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372. doi: 10.1016/0021-9991(81)90128-5
    [2] Tadmor E. The numerical viscosity of entropy stable schemes for systems of conservation laws, Ⅰ[J]. Mathematics of Computation, 1987, 49(179): 91-103. doi: 10.1090/S0025-5718-1987-0890255-3
    [3] Roe P L. Affordable, entropy-consistent, flux functions[C]//Oral Talk at Eleventh International Conference on Hyperbolic Problems: Theory, Numerics, Applications. Lyon, France, 2006.
    [4] Ismail F, Roe P L. Affordable, entropy-consistent Euler flux functions, Ⅱ: Entropy production at shocks[J]. Journal of Computational Physics, 2009, 228(15): 5410-5436. doi: 10.1016/j.jcp.2009.04.021
    [5] Tadmor E. Numerical viscosity and the entropy conditions for conservative difference schemes[J]. Mathematics of Computation, 1984, 43(168): 369-381. doi: 10.1090/S0025-5718-1984-0758189-X
    [6] Liu X D, Osher O, Chan T. Weighted essentially non-oscillatory schems[J]. Journal of Computational Physics, 1994, 115(1): 200-212. doi: 10.1006/jcph.1994.1187
    [7] Tadmor E. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems[J]. Acta Numerica, 2003, 12: 451-512. doi: 10.1017/S0962492902000156
    [8] Fjordholm U S, Mishra S, Tadmor E. Energy preserving and energy stable schemes for the shallow water equations[R]. Hong Kong: Foundations of Computational Mathematics, 2008.
    [9] Gottlieb S, Shu C W, Tadmor E. High order time discretizations with strong stability properties[J]. SIAM Review, 2001, 43(1): 89-112. doi: 10.1137/S003614450036757X
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  3293
  • HTML全文浏览量:  344
  • PDF下载量:  468
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-22
  • 修回日期:  2013-06-03
  • 刊出日期:  2014-07-25

目录

    /

    返回文章
    返回