-
摘要: 通过在单元交界面处进行高阶WENO重构,得到了一种求解双曲型守恒律方程的WENO型熵相容格式。用该格式对一维Burgers方程和Euler方程进行数值模拟,结果表明,该格式具有高精度、基本无振荡性等特点。
-
关键词:
- 流体力学 /
- WENO型熵相容格式 /
- WENO重构 /
- 双曲守恒律
Abstract: Compared with entropy stable schemes, entropy consistent schemes control entropy production more exactly and effectively eliminate phenomena such as expansion shocks and spurious oscillations. By using WENO (weighted essentially non-oscillatory) reconstruction of higher order at cell interfaces, a WENO type entropy consistent scheme for hyperbolic conservation laws is presented. The one-dimentional Burgers equation and Euler equations are used to test the proposed scheme. The numerical experiments demonstrate that the scheme is accurate and essentially non-oscillatory. -
表 1 EC-WENO格式的数值精度
Table 1. Numerical accuracy of EC-WENO scheme
网格数 L1 精度阶 L∞ 精度阶 20 1.420 0×10-2 1.020 0×10-2 40 4.653 5×10-4 4.931 4 3.859 9×10-4 4.723 9 80 1.447 5×10-5 5.006 7 1.310 2×10-5 4.880 7 160 4.515 7×10-7 5.002 5 4.137 0×10-7 4.985 1 -
[1] Roe P L. Approximate Rieman solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372. doi: 10.1016/0021-9991(81)90128-5 [2] Tadmor E. The numerical viscosity of entropy stable schemes for systems of conservation laws, Ⅰ[J]. Mathematics of Computation, 1987, 49(179): 91-103. doi: 10.1090/S0025-5718-1987-0890255-3 [3] Roe P L. Affordable, entropy-consistent, flux functions[C]//Oral Talk at Eleventh International Conference on Hyperbolic Problems: Theory, Numerics, Applications. Lyon, France, 2006. [4] Ismail F, Roe P L. Affordable, entropy-consistent Euler flux functions, Ⅱ: Entropy production at shocks[J]. Journal of Computational Physics, 2009, 228(15): 5410-5436. doi: 10.1016/j.jcp.2009.04.021 [5] Tadmor E. Numerical viscosity and the entropy conditions for conservative difference schemes[J]. Mathematics of Computation, 1984, 43(168): 369-381. doi: 10.1090/S0025-5718-1984-0758189-X [6] Liu X D, Osher O, Chan T. Weighted essentially non-oscillatory schems[J]. Journal of Computational Physics, 1994, 115(1): 200-212. doi: 10.1006/jcph.1994.1187 [7] Tadmor E. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems[J]. Acta Numerica, 2003, 12: 451-512. doi: 10.1017/S0962492902000156 [8] Fjordholm U S, Mishra S, Tadmor E. Energy preserving and energy stable schemes for the shallow water equations[R]. Hong Kong: Foundations of Computational Mathematics, 2008. [9] Gottlieb S, Shu C W, Tadmor E. High order time discretizations with strong stability properties[J]. SIAM Review, 2001, 43(1): 89-112. doi: 10.1137/S003614450036757X