• ISSN 1001-1455  CN 51-1148/O3
  • EI Compendex、CA收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Articles in press have been peer-reviewed and accepted, which are not yet assigned to volumes /issues, but are citable by Digital Object Identifier (DOI).
Display Method:
2019, 39(7): 1-2.  
Read OL PDF (3)
Invited Article & General Review
In this study we developed a hydraulic servo control system for experimental study on concrete penetration under triaxial stress for independently-controlled triaxial confinement on cubic specimens, and launched bullets to penetrate concrete specimens with high pressure, using the strain gauges to record the dynamic compression signals and side friction signals on the six bars of six surfaces of the specimens. Taking the concrete specimens as an example, we investigated the cubic specimens’ penetration performance under different stress states based on the independently-controlled triaxial confinement of 0-100 MPa, and obtained their penetration differences under unilateral, unilateral and bidirectional lateral confinements, revealing the effect of the stress state on penetration performance.
Explosion Physics
When the oil depot is in fire, a large amount of gasoline vapor is formed by the heat absorption of oil in an adjacent gasoline tank with a fixed top. The gasoline vapor is ignited after mixing with air, which is likely to cause combustion and explosion accidents. In this paper, the gasoline vapor leaked from a tank of 5 000 m3 (\begin{document}$ \varnothing$\end{document}22 m×13 m) is taken as the research object, the law of gas vapor leakage and explosion is researched by numerical simulation. It is found that the area beyond 50 m away from the tank center is safe at 1 m above the ground if there is no wind and the gasoline vapor leakage velocity is 0.25 m/s. It is not easy to accumulate into the flammable gasoline vapor as the gasoline vapor leakage velocity from the breathing valve is 0.25 m/s, and the wind speed reaches 5.0 m/s and above. As there is no wind and the gasoline vapor leakage velocity from the breathing valve is increased by 1 order of magnitude, the time to half of the lower flammability limit is reduced by 2 orders of magnitude. When the wind speed is 3.0 m/s, the gasoline vapor leaking velocity is 0.25 m/s, and the leakage time is 200 s, the peak overpressure is reduced by 1−2 orders of magnitude if the distance to the ignition source is increased by 1 order of magnitude.
In order to study the dynamic response behavior of a sand wall in the process of the shock-sand wall interaction, experiments are carried out in a horizontal shock tube. A high-speed schlieren imaging system is used to capture the instantaneous structures of shock wave and moving process of the sand wall in the flow field. The incident shock Mach number ranges from 1.827 to 2.413, and the incident shock strength ranges from 0.378 MPa to 0.724 MPa. Three different kinds of sand walls are constructed using well-size-distributed iron sand, bauxite sand and quartz sand, the corresponding porosities of these sand walls are 56.6%, 69.3% and 56.6%, respectively. High-speed schlieren photographs show that regular reflection occurs when the incident shock wave impacts the sand wall. Moreover, the sand wall does not move significantly until the hundreds of microseconds after the onset of the interaction, indicating that the dynamic response behavior of the sand wall is similar to that of a rigid body. Basing on the shock wave theory, the Hugoniot relations for sand walls made from three different materials are established. The bulk elastic moduli of iron-, bauxite- and quartz-sand walls are 0.913, 0.478, and 0.225 GPa, respectively. The constant λ in the Hugoniot relations is on the order of 100. It is concluded that the relatively low shock impacting majorly leads to the volume deformation of the sand wall, and the heat effect of the sand wall caused by shock loading may be unimportant.
In this work we carried out vented explosion experiments with different pressure relief membrane material and layers and different venting locations in the square flame propagation test pipeline and investigated the influence of pressure relief membrane constraints on explosion pressure’s characteristics of premixed methane/air gas using the pressure sensor to measure the peak overpressure under various experimental conditions in the pipeline and comparing their venting effects. The results showed that there is a linear relationship between the maximum explosion pressure and the number of relief membrane layers made of the same material. The maximum explosion pressure in the pipeline increased by 11.2% and 12.3% respectively for each additional pressure relief membrane layer of kraft paper and polypropylene film. As the venting location approached the ignition end, the maximum explosion pressure in the pipeline showed a " Z” pattern with different pressure relief membrane strengths. When the venting location was set at 0.25 m from the trailing end, the minimum value was observed for each curve. When the venting location was set at 0.50 m from the trailing end, each curve reached its maximum value.
The mechanical behavior of PBX has an important impact on its safety. In order to study the mechanical properties of PBX-1, the quasi-static mechanical experiments and SHPB (split-Hopkinson pressure bar) experiments were conducted. The results showed that the crack direction was the direction of maximum shear stress, which was about 45° to the loading direction in the quasi static compression tests. In the SHPB tests, the dynamic yield strength, dynamic compression strength and failure strain of PBX-1 explosive were continuously improved with the improvement of strain rate in the range of 100−1 500 s−1.The dynamic yield strength gradually increased from the static 2.77 MPa to 16.1 MPa. The compression strength increased from 7.46 MPa to 16.1 MPa, and the failure strain increased from 6.23% to 26.4%. At the same time, based on the Z-W-T model, a dynamic viscoelastic constitutive model with damage was established. It has a high accuracy in the range of 330−1 500 s−1 strain rate, and could be used to describe the dynamic mechanical behavior of PBX-1 before failure.
Explosion Physic
To investigate the influence of the porosity (charge density) on the shock initiation and detonation of polymer bonded explosives (PBXes), a one-dimensional Lagrangian experimental testing system is adopted to measure the pressure-time histories at different Lagrangian locations of PBXC03 (87% HMX, 7% TATB, 6% binder by weight) with three different porosities (or charge densities), in which, an explosive plane-wave lens is used to generate a high-pressure planar detonation wave loading, and the Manganin piezoresistive pressure gauge measurement technique and the attenuation technique by both air-gap and Al-gap are used. The experimental results show that the detonation grows the fastest in the explosive with a moderate porosity. This work provides more detailed experimental data for the further development of mesoscopic reaction rate models for shock initiation of heterogeneous explosives.
Impact Dynamics
Samples for uniaxial tension and spallation experiments of GP1 stainless steel were produced by selective laser melting (SLM). The microstructure of SLM GP1 was characterized by using the optical metallography and electron-backscatter diffraction (EBSD). The tensile mechanical behavior of SLM GP1 as a function of strain rate was studied by using a Zwick-HTM5020 high-speed tensile testing machine and the digital image correlation (DIC) full-field strain measurement method. Significant austenite-to-martensite phase transformation was observed during tensile loading with accompanied plastic strain hardening. Yield stress increases exponentially with strain rate, but at high strain rates (40 and 600 s−1), the yield stress rapidly increases, while the fracture strain decreases significantly. The spallation response of SLM GP1 was investigated by using plate impact experiments. Based on the free-surface particle velocity profiles measured by a displacement interferometer system for any reflector (DISAR), the spall strength of SLM GP1 was found to decrease with increasing flyer impact velocity. Fractography revealed the variation of the fracture mode and fracture mechanism of SLM GP1 as a function of strain rate. Damage nucleates easily at the intersection of the laser melting pool boundary line and grows along the laser pool boundary line. Fracture dimple morphology of the spalled samples is obviously different from that of the samples under the uniaxial tensile loading.
The extreme local interaction between the projectile and target will cause mass erosion of the projectile during high-speed penetrating, and then decreases penetration performance of the penetrator. Aggregates in the concrete target will affect mass loss of the projectile obviously. Analysis about the experimental data is conducted to further discuss the effect of concrete aggregate on mass loss of the residual projectile after high speed penetration into concrete target. By assuming the concrete as a two-phase composite composed of mortar and aggregate and introducing the volume fraction and shear strength of aggregate instead of the aggregate Moh’s hardness, a modified engineering model is presented to predict the mass loss of projectile by giving a dimensionless modified factor β affected by aggregate. The modified model is in good agreement with available experimental data and can better characterize the effect of aggregate on the mass abrasion of penetrator into concrete target.
Ice breaking by blasting is a complex process in underwater explosion engineering. In this study we examined the fragmentation characteristics of ice cover with underwater explosion shock wave and simulated the process of underwater explosion breaking ice process using LS-DYNA. We also compared the simulation result with the experimental data and found the min good agreement. Based on this we verified the simulation model and calculated different conditions. Then, keeping the test environment unchanged, we set different detonation distances, and calculated the radius of the ice breaking hole; varying the charge dosage, the detonation distance and the ice thickness, we designed nine group simulation conditions by the orthogonal design method, and analyzed the gray relational degrees and gray incidence coefficients between radius of breaking ice hole and different factors at different levels using the gray system theory. The analytical results showed that, at 100 g of the dosage, the ice thickness is 29 cm, the water depth is 2.9 m, the detonation distance range is 0.3−1.5 m, the radius range of breaking ice hole is 0−1.1 m, and the best detonation distance is between 0.3−0.45 m. According to the analysis of the above nine simulation conditions, the influencing factors that matter most remarkably in underwater ice breaking are the detonation distance (0.3, 0.6, 0.9 m), the dosage (100, 200, 300 g), and the ice thickness (24, 28, 32 cm), in order of their importance.
Model experiments of hypervelocity penetration of steel rods at about Mach 10 into four types of layered geological material targets were conducted with a two-stage light gas gun, and the effects of the mortar position and the air-layer set on penetration were emphasized. The results show that, under certain conditions, both adding an air layer between the shielding layer and the lower structure layer and setting a mortar layer at the upper surface of the whole structure can promote the projectiles broken, decrease the penetration depth into the structural layer, but in the mean time intensify the cratering effect of the shielding layer. For reducing the penetration depth of the structural layer, the soft-hard-soft-hard layering set is feasible to optimize the anti-penetration performance against hypervelocity projectiles, in which the first soft layer is the surface layer made of porous materials with low sound impedance, the first hard layer is the shielding layer made of materials with high strength and hardness, and the second soft layer is the distribution layer and the second hard layer is the structural layer.
Experimental Techniques & Numerical Method
Based on the similarity theory, the heavy ball landing experiments were conducted to simulate the collapse of the goaf in order to provide guidance for the goaf disposal. The particle peak vibration velocities corresponding to the balls with the mass 4 kg and 10 kg dropping from 1.0, 1.5 and 2.0 m respectively were measured experimentally on the basis of characteristics analysis of vibration wave. For the first time, the concepts of cumulative attenuation rate of vibration velocity and relative energy ratio were proposed. The collapse vibration velocity of the goaf was analyzed with the help of the Protodyakonov’s arch theory. The study shows that the mass and dropping height of the heavy ball are positively related to the vibration velocity, and the former has greater influence on the cumulative attenuation rate than that of the latter. With the increase of measuring distance, the overall vibration velocity shows an attenuation trend. The accumulative decay rates for 4 kg and 10 kg heavy balls at 3.0 m are 79.79%−81.61% and 79.95%−83.52%, respectively. Reflections and refractions at the interface of different media can cause a small " jump increase” in vibration velocity. The mass has a significant effect on vibration energy attenuation: the greater the mass, the slower the energy attenuation in the near area. The goaf collapsed mass is 582.5 t to 5 926.5 t and it causes the particle vibration velocity to be much larger than that of the safety allowable value. With the comprehensive treatment plan of " roof caving+slope slope cutting”, the slope safety factor can reach 1.26, completely eliminating the hidden dangers in the goaf area.
In order to simplify the evaluation of the anti-collision performance after structural fatigue damage, an equivalent stress-strain curve method based on strain equivalence was proposed in the same way as the isochronous stress-strain curve in structural creep analysis. And compared with the general analysis, the results of comparative analysis show that the maximum damage reaction force from the equivalence analysis method is almost the same as that from the general analysis method, and the relative error of the structural failure energy simulated by the two methods is relatively small. It validates the effectiveness of the equivalence analysis method. And the equivalence analysis method is more friendly to model and evaluate rapidly the anti-collision performance over the entire life of a ship.
Experimental Techniques & Numerical Methods
There is a lack in technology that is suitable for characterizing the shock-induced micro-jetting of metal sample with complex configuration. In this work, step signal electric probe is developed to characterize micro-jetting. The probe is designed by numerical simulation and the discharging mechanism (K+RX model) of probe caused by micro-jetting is also verified by simulation. Quasi-continuous micro-jetting region can be directly observed on the probed signal and two kinds of dynamic processes exist: density increasing and pulling-extending to discrete state. The mass in quasi-continuous micro-jetting region is described by micro-jetting model, the equivalent size of micro-jetting is calculated based on the equivalent resistance that is obtained from the voltage signal. Thus the density of the quasi-continuous micro-jetting is obtained.
The function of an explosively-formed projectile (EFP) is not only penetrating the armor but also destroying the equipment behind the armor by behind-armor debris (BAD). It is necessary to predict the mass of BAD since the mass distribution of BAD is an important measurement to evaluate the level of destruction caused by BAD. A mass model for BAD generated by normal penetration of an EFP into an armor steel plate was improved by considering the variable cross-section characteristic of the EFP, basing on Bernoulli's equation of the flowing fluid and adiabatic shear theory. The accuracy of the model was validated by the experimental data and numerical simulation results. Therefore, the influences of the thickness of the target and the impact velocity of the EFP on the mass of BAD generated by the target and EFP were investigated. The results indicate: (1) compared with the previous model, the improved model can more accurately explain the mass variation of BAD generated by the target and EFP with the thickness of the target and the impact velocity of the EFP; (2) as the impact velocity of the EFP is 1 650 m/s, with the thickness of the target increasing from 30 mm to 70 mm, the effect of the variable cross-section characteristics on the mass of BAD generated by the target and EFP is constantly increasing; (3) as the thickness of the target is 40 mm, with the increase of the initial velocity of the EFP from 1 650 m/s to 1 860 m/s, the effect of the variable cross-section characteristics on the mass of BAD generated by the target and EFP is constantly decreasing.
Applied Explosion Mechanics
The shear pin is a key component of an explosive-actuated device. It must be cut by explosive force and guarantee regular work under mechanical environment in reliability analysis. The mechanical model of the shear pin constrained by the mechanical boundary is built based on the polynomial chaos expansion (PCE) method. Then, the sequential optimization and reliability assessment (SORA) method is adopted to promote a reliability-based design optimization (RBDO) for the shear pin. An explosive-actuated device is selected as an application example of reliability analysis and design, which is based on the idea proposed in this paper. Through the parametric sensitivity analysis of the shear pin, the relationship between designing parameters and mechanical environments is revealed and the effective factors on its reliability are obtained. At last, the explosive-actuated device is manufactured with optimal parameters and works normally under mechanical environment. It is proved that the promoted idea is accurate and useful for the reliability design and optimization of the shear pin under mechanical environments.
Aiming at the high-g launching overload of the guided ammunition, the semi-strapdown stabilization platform in the shell is easily damaged when only the bearing bears axial high overload, the " counter-top hemisphere” structure was designed. Based on the analysis of the working principle and anti-overload design requirements of the semi-strapdown stabilization platform, this study analyzed the forces situation of " counter-top hemisphere” structure, the materials used were selected, and the finite element simulation analysis was performed. Finally, the structure was manufactured, and it was verified by semi-physical test. It was shown that when the semi-strapdown stabilization platform is subjected to high overload, the structure can play an effective protective role, when projectile and the internal semi-strapdown stabilization platform is under high overload condition, and provides the foundation forattitude measurement of theprojectile. The anti-high-overload buffer structure supports a stable and reliable working environment for the inertial measurement system, which has engineering application value. The inertial measurement system can still work stably and reliably when overload reaches 11 000g. The design has engineering application value.
By comparing with their solid reinforced concrete columns counterparts, the inner hollow reinforced concrete columns are widely used as piers because of their advantages including light weight and good section extension. These piers will inevitably be hit by ships. In this paper, dynamic response experiments of six inner octagonal hollow reinforced concrete columns with and without steel tube are carried out. The failure mode, the impact force- versus-time curves and trans-middle displacement-versus-time curves were recorded. The impact resistance of the component is obtained by analysis of the impact height, the condition of the boundary and the thickness of the steel tube The experimental results show that failure modes of inner octagonal hollow reinforced concrete columns under lateral impact load can be divided into two categories: local failure (type I) and global failure (type II). As the height of impact increases, the damage seriousness of the component increases. Fixing two endings of the component can improve its impact resistance. The thickness of the steel tube has an obvious effect on the impact resistance of the component.
The distribution of cracks around the rock hole after perforation has a great influence on the subsequent fracturing. A cross-section of the target is selected as the researching object. The process of three-dimensional penetration is simplified into a two-dimensional reaming process. In terms of the mesoscopic heterogeneity of the rock, the strength parameters of meso-units are set to obey the Weibull probability distribution. The tensile failure criteria and the Mohr-Coulomb compression shear failure criteria are applied, and modulus reduction method is applied to deal with cracking. Then FEPG software is used to achieve a finite element method (FEM) simulation. The simulation results show that according to the causes and distribution of cracks, the perforated rock can be divided into four regions from the inside to the outside: compression shear damage zone, tensile damage concentration zone, tensile damage propagation zone and undamaged zone. The variations of crack distribution under different loading and confining pressure conditions are analyzed. Compared with the results of laboratory simulation experiments, the validity of the model is preliminarily verified. The research results lay the foundation for subsequent research work.
2002, 22(3): 242-246.  
[Abstract](246) PDF(102)
2003, 23(2): 188-192.  
[Abstract](248) PDF(67)
2001, 21(1): 29-34.  
[Abstract](266) PDF(61)
2004, 24(2): 182-188.  
[Abstract](267) PDF(70)
2001, 21(2): 81-88.  
[Abstract](241) PDF(85)
2002, 22(3): 198-202.  
[Abstract](234) PDF(95)
2001, 21(3): 223-228.  
[Abstract](229) PDF(35)
Investigation and validation on plastic constitutive parameters of 45 steel
CHEN Gang, CHEN Zhong-fu, TAO Jun-lin, NIU Wei, ZHANG Qing-ping, HUANG Xi-cheng
2005, 25(5): 451-456.   doi: 10.11883/1001-1455(2005)05-0451-06
[Abstract](411) PDF(605)
2002, 22(4): 321-326.  
[Abstract](240) PDF(18)
2003, 23(1): 25-30.  
[Abstract](249) PDF(72)
Design and impact analysis of a high-g accelerometer
SHI Yun-Bo, ZHU Zheng-Qiang, LIU Xiao-Peng, DU Kang, LIU Jun
2010, 30(3): 329-332.   doi: 10.11883/1001-1455(2010)03-0329-04
[Abstract](4452) PDF(131)
Damage modes of stiffened plates subjected to underwater explosion load
ZHU Xi, MOU Jin-Lei, WANG Heng, ZHANG Zhen-Hua
2010, 30(3): 225-231.   doi: 10.11883/1001-1455(2010)03-0225-07
[Abstract](4011) PDF(53)
Large eddy simulation for the multi-viscosity-fluid and turbulence
BAI Jin-Song, WANG Tao, ZOU Li-Yong, LI Ping
2010, 30(3): 262-268.   doi: 10.11883/1001-1455(2010)03-0262-07
[Abstract](3367) PDF(39)
Dynamic response of foam sandwich plates subjected to impact loading
SONG Yan-Ze, WANG Zhi-Hua, ZHAO Long-Mao, ZHAO Yong-Gang
2010, 30(3): 301-307.   doi: 10.11883/1001-1455(2010)03-0301-07
[Abstract](3440) PDF(58)
On dynamic structural response of an airplane landing onto water
He-Qian, LI Yuan-Sheng, LI Lei, YUE Zhu-Feng
2010, 30(2): 125-130.   doi: 10.11883/1001-1455(2010)02-0125-06
[Abstract](2445) PDF(52)
Characteristics of ultra-high performance cementitious composites under explosion
RONG Zhi-Dan, SUN Wei, ZHANG Yun-Sheng, ZHANG Wen-Hua
2010, 30(3): 232-238.   doi: 10.11883/1001-1455(2010)03-0232-07
[Abstract](3601) PDF(40)
Design and realization of an acceleration measurement system by using Model 1221
ZHU Yi-Chao, GAO Cheng, LI Yan-Xin, CHEN Yong-Guang
2010, 30(3): 333-336.   doi: 10.11883/1001-1455(2010)03-0333-04
[Abstract](3102) PDF(43)
Explosion characteristics of coal dust in a sealed vessel
GAO Cong, LI Hua, SU Dan, HUANG Wei-Xing
2010, 30(2): 164-168.   doi: 10.11883/1001-1455(2010)02-0164-05
[Abstract](2822) PDF(49)
Acoustic emission experiment of rock failure under coupled static-dynamic load
WANG Qi-Sheng, WAN Guo-Xiang, LI Xi-Bing
2010, 30(3): 247-253.   doi: 10.11883/1001-1455(2010)03-0247-07
[Abstract](3282) PDF(51)
A calculation method for supercavity profile about a slender cone-shaped projectile traveling in water at subsonic speed
ZHANG Zhi-Hong, MENG Qing-Chang, GU Jian-Nong, WANG Chong
2010, 30(3): 254-261.   doi: 10.11883/1001-1455(2010)03-0254-08
[Abstract](3235) PDF(45)
Explosion mechanism of carbon powder
LAI Cheng-Feng, DUAN Zi-Hua, ZHANG Yong-Fa, ZHANG Lao-Lao
2010, 30(3): 325-328.   doi: 10.11883/1001-1455(2010)03-0325-04
[Abstract](3214) PDF(47)
ZHANG Ding-Shan, WANG Hao, FENG Guo-Zeng, LIU Bin, GUO Jin-Yan
2010, 30(3): 314-319.   doi: 10.11883/1001-1455(2010)03-0314-06
[Abstract](3040) PDF(59)
Penetration of cylindrical-nose-tip projectiles into concrete targets
SUN Chuan-Jie, LU Yong-Gang, ZHANG Fang-Ju, LI Hui-Min
2010, 30(3): 269-275.   doi: 10.11883/1001-1455(2010)03-0269-07
[Abstract](3435) PDF(38)
Three-dimensional discrete element simulation of hot spots in explosives under shock loading
SHANG Hai-Lin, ZHAO Feng, WANG Wen-Qiang, FU Hua
2010, 30(2): 131-137.   doi: 10.11883/1001-1455(2010)02-0131-07
[Abstract](2521) PDF(60)
Performance of a 60 kJ electric gun
CHEN Lin, DAI Ying-Min, SU Jian-Jun, FENG Shu-Ping, XIE Wei-Ping, WANG Hui, REN Jing, WU Shou-Dong, LI Ye
2010, 30(3): 283-287.   doi: 10.11883/1001-1455(2010)03-0283-05
[Abstract](4756) PDF(53)
Dynamic deformations of 921A steel pure shear hat-shaped specimen in SHPB tests
LI Ji-Cheng, CHEN Xiao-Wei, CHEN Gang
2010, 30(3): 239-246.   doi: 10.11883/1001-1455(2010)03-0239-08
[Abstract](3475) PDF(46)
Prediction of the lower flammability limits of hydrocarbons based on the quantitative structure-property relationship studies
PAN Yong, JIANG Jun-Cheng, WANG Rui
2010, 30(3): 288-294.   doi: 10.11883/1001-1455(2010)03-0288-07
[Abstract](3135) PDF(64)
Application of DCD scheme to computation of two-phase flow interior ballistics for fractured propellant bed
YUAN Lai-Feng, RUI Xiao-Ting, WANG Guo-Ping, CHEN Tao
2010, 30(3): 295-300.   doi: 10.11883/1001-1455(2010)03-0295-06
[Abstract](2941) PDF(43)
Effects of reinforcement ratio and impact position on anti-penetration properties of reinforced concrete
Lou-Jian-Feng, WANG Zheng, ZHU Jian-Shi, ZHANG Feng-Guo, HONG Tao
2010, 30(2): 178-182.   doi: 10.11883/1001-1455(2010)02-0178-05
[Abstract](2341) PDF(46)
Effect of different explosion or shock seismic inputs on efficiency of a whole vibration-isolating system
DU Jian-Guo, XIE Qing-Liang, FENG Jin-Ji, LI Li-Sha
2010, 30(3): 276-282.   doi: 10.11883/1001-1455(2010)03-0276-07
[Abstract](3127) PDF(34)
Theory analysis on shock-induced chemical reaction of reactive metal
ZHANG Xian-Feng, ZHAO Xiao-Ning, QIAO Liang
2010, 30(2): 145-151.   doi: 10.11883/1001-1455(2010)02-0145-07
[Abstract](2631) PDF(64)
Shock wave propagation characteristics in C30 concrete under plate impact loading
WANG Yong-Gang, WANG Li-Li
2010, 30(2): 119-124.   doi: 10.11883/1001-1455(2010)02-0119-06
[Abstract](2814) PDF(35)
Review on research and development of water-entry impact problem
WANG Yong-hu, SHI Xiu-hua
2008, 28(3): 276-282.   doi: 10.11883/1001-1455(2008)03-0276-07
[Abstract](637) PDF(72)
Pressure desensitization of emulsion explosives sensitized by compound sensitizers
WANG Yin-Jun, LI Yu-Jing, GAN De-Huai
2010, 30(3): 308-313.   doi: 10.11883/1001-1455(2010)03-0308-06
[Abstract](4003) PDF(35)
Effects of plane shock loading on structure of Ti6Al4V alloy
WEN Xia, YANG Shi-Yuan, WANG Jun-Xia, ZHANG Lin, LIU Xiao-Nan
2010, 30(3): 320-324.   doi: 10.11883/1001-1455(2010)03-0320-05
[Abstract](3023) PDF(46)
Blast resistance of large underground rock caverns in hydraulic power stations
ZHAO Bao-You, MA Zhen-Yue, LIANG Bing, XU Wei, XU Xin-Yong
2010, 30(2): 183-190.   doi: 10.11883/1001-1455(2010)02-0183-08
[Abstract](2230) PDF(47)
Kinetics of isothermal phase transition of HMX based on quantitative phase analysis using the Rietveld method
XUE Chao, SUN Jie, SONG Gong-Bao, KANG Bin, XIA Yun-Xia
2010, 30(2): 113-118.   doi: 10.11883/1001-1455(2010)02-0113-06
[Abstract](2540) PDF(46)
Review of the development of Hopkinson pressure bar technique in China
Hu Shi-sheng, Wang Li-li, Song Li, Zhang Lei
2014, 34(6): 641-657.   doi: 10.11883/1001-1455(2014)06-0641-17
[Abstract](1134) PDF(44)
Deflagration characteristics of a preheated CO-air mixture in a duct
ZHANG Liang, WEI Xiao-Lin, YU Li-Xin, ZHANG Yu, LI Teng, LI Bo
2010, 30(2): 191-196.   doi: 10.11883/1001-1455(2010)02-0191-06
[Abstract](2414) PDF(59)
Power capability and parameters of JWL equation of state for RDX-based PBX
Wang Xinying, Wang Shushan, Xu Yuxin, Hu Sai
2016, 36(2): 242-247.   doi: 10.11883/1001-1455(2016)02-0242-06
[Abstract](934) [FullText HTML](119) PDF(119)
Failure mechanism of single-layer reticulated domes subjected to impact loads
Wang-Duo-Zhi, FAN Feng, ZHI Xu-Dong, SHEN Shi-Zhao
2010, 30(2): 169-177.   doi: 10.11883/1001-1455(2010)02-0169-09
[Abstract](2408) PDF(47)
Experiments and numerical simulations of sympathetic detonation of explosives in shell
WANG Chen, WU Jun-Ying, CHEN Lang, LU Jian-Ying, GUO Xin, WANG Xiao-Feng
2010, 30(2): 152-158.   doi: 10.11883/1001-1455(2010)02-0152-07
[Abstract](2980) PDF(67)
Dynamic response of woven Kevlar/Epoxy composite laminatesunder impact loading
Ma Xiaomin, Li Shiqiang, Li Xin, Wang Zhihua, Wu Guiying
2016, 36(2): 170-176.   doi: 10.11883/1001-1455(2016)02-0170-07
[Abstract](764) [FullText HTML](121) PDF(121)
Multiple elastic-plastic impacts of a simply supported beam struck by a round-nosed mass
LIU Zhong-Hua, YIN Xiao-Chun
2010, 30(2): 138-144.   doi: 10.11883/1001-1455(2010)02-0138-07
[Abstract](2190) PDF(44)
FEM analysis of impact experiments with steel plated concrete walls based on ANSYS/LS-DYNA
Zhu Xiu-yun, Pan Rong, Lin Gao, Li Liang
2015, 35(2): 222-228.   doi: 10.11883/1001-1455(2015)02-0222-07
[Abstract](1560) PDF(55)
Formationandterminaleffectofanexplosively-formedpenetrator madebyenergeticmaterials
Wan Wen-qian, Yu Dao-qiang, Peng Fei, Wang Wei-ming, Yang Tian-hai
2014, 34(2): 235-240.   doi: 10.11883/1001-1455(2014)02-0235-06
[Abstract](933) PDF(47)
Deformation and failure of reinforced concrete beams under blast loading
Li Meng-shen, Li Jie, Li Hong, Shi Cun-cheng, Zhang Ning
2015, 35(2): 177-183.   doi: 10.11883/1001-1455(2015)02-0177-07
[Abstract](820) PDF(40)
Talk about dynamic strength and damage evolution
Lili Wang, Shisheng Hu, Liming Yang, Xinlong Dong, Hui Wang
2017, 37(2): 169-179.   doi: 10.11883/1001-1455(2017)02-0169-11
[Abstract](1762) [FullText HTML](1021) PDF(1021)
Dynamic caustic experiment on fracture behaviors of flawed material induced by pre-notched blasting
Yang Renshu, Xu Peng, Yang Liyun, Chen Cheng
2016, 36(2): 145-152.   doi: 10.11883/1001-1455(2016)02-0145-08
[Abstract](1080) [FullText HTML](117) PDF(117)
Numerical analysis on liquid sloshing in storage container by nonlinear dynamics method
Li Wen-sheng, Zhao You-qing, Jia Shan-po, Wang Kai, Tan Ji-ke
2014, 34(1): 86-92.  
[Abstract](985) PDF(40)
Correlation between the critical tube diameter and annular interval for detonation wave in high-concentration argon diluted mixtures
Yu Jian-liang, Gao Yuan, Yan Xing-qing, Gao Wei
2015, 35(4): 603-608.   doi: 10.11883/1001-1455(2015)04-0603-06
[Abstract](762) PDF(45)
Dynamic behavior of concrete under static triaxial loadingusing 3D-Hopkinson bar
Songlin Xu, Pengfei Wang, Jian Zhao, Shisheng Hu
2017, 37(2): 180-185.   doi: 10.11883/1001-1455(2017)02-0180-06
[Abstract](1482) [FullText HTML](785) PDF(785)
Sensitivity analysis for impact resistance of steel plate concrete walls based on force vs. time-history analysis
Zhu Xiuyun, Lin Gao, Pan Rong, Lu Yu
2016, 36(5): 670-679.   doi: 10.11883/1001-1455(2016)05-0670-10
[Abstract](690) [FullText HTML](241) PDF(241)
One-dimensional yield behavior of MDYB-3 polymethyl methacrylate at different strain rates
Deng Xiao-Qiu, Li Zhi-Qiang, Zhou Zhi-Wei, Wang Zhi-Hua, Yao Xiao-Hu
2015, 35(3): 312-319.   doi: 10.11883/1001-1455-(2015)03-0312-08
[Abstract](858) PDF(44)
One parameter-obtained method for JWL equation of state considered detonation parameters
Nan Yu-xiang, Jiang Jian-wei, Wang Shu-you, Men Jian-bing
2015, 35(2): 157-163.   doi: 10.11883/1001-1455(2015)02-0157-07
[Abstract](799) PDF(48)
Review of pyroshock simulation andresponse prediction methods in spacecraft
Zhao Xin, Ding Jifeng, Han Zengyao, Zou Yuanjie
2016, 36(2): 259-268.   doi: 10.11883/1001-1455(2016)02-0259-10
[Abstract](849) [FullText HTML](118) PDF(118)
Theoretical studies for calculating the detonation products and properties of explosives
Du Ming-ran, Wang Xu-guang, Guo Zi-ru, Yan Shi-long
2015, 35(4): 449-453.   doi: 10.11883/1001-1455(2015)04-0449-05
[Abstract](781) PDF(49)
Energy-absorbing structure design and crashworthiness analysis of high-speed trains
Li Song-yan, Zheng Zhi-jun, Yu Ji-lin
2015, 35(2): 164-170.   doi: 10.11883/1001-1455(2015)02-0164-07
[Abstract](992) PDF(70)
Effects of reflected wave on premixed-gas explosion and dynamic response of tube shells
Zhou Ning, Zhang Bingbing, Feng Lei, Geng Ying, Jiang Shuai, Zhang Lu
2016, 36(4): 541-547.   doi: 10.11883/1001-1455(2016)04-0541-07
[Abstract](557) [FullText HTML](136) PDF(136)
Study on the model of hot-spot ignition based on friction generated heat on the microcrack face
Lou Jian-feng, Zhang Yan-geng, Hong Tao, Zhou Ting-ting, Guo Shao-dong
2015, 35(6): 807-811.   doi: 10.11883/1001-1455(2015)06-0807-05
[Abstract](659) PDF(43)
Jiang Qi, Liu Tong, Wang Ru-heng, Pan Ting
2014, 34(2): 229-234.   doi: 10.11883/1001-1455(2014)02-0229-06
[Abstract](860) PDF(51)
Material key parameters measurement method in the dynamic tensile testing at intermediate strain rates
Bai Chun-yu, Liu Xiao-chuan, Zhou Su-feng, Li Wei-ming, Shu Wan
2015, 35(4): 507-512.   doi: 10.11883/1001-1455(2015)04-0507-06
[Abstract](591) PDF(42)
Ma Qing-peng, He Chun-tao, Wang Cong, Wei Ying-jie, Lu Zhong-lei, Sun Jian
2014, 34(2): 174-180.   doi: 10.11883/1001-1455(2014)02-0174-07
[Abstract](1009) PDF(67)
Constitutive model of transparent aviation polyurethane at high strain rates
Zhang Long-hui, Zhang Xiao-qing, Yao Xiao-hu, Zang Shu-guang
2015, 35(1): 51-56.   doi: 10.11883/1001-1455(2015)01-0051-06
[Abstract](1082) PDF(57)
Numerical analysis of dynamic response and impact resistance of a large-span rock shed in a tunnel under rockfall impact
Wang Shuang, Zhou Xiaojun, Jiang Bo, Zhou Yuefeng
2016, 36(4): 548-556.   doi: 10.11883/1001-1455(2016)04-0548-09
[Abstract](501) [FullText HTML](128) PDF(128)
Experiment and numerical simulation on ignition of charge by fragment impact
Sun Bao-ping, Duan Zhuo-ping, Zhang Hai-ying, Liu Yan, Huang Feng-lei
2013, 33(5): 456-462.   doi: 10.11883/1001-1455(2013)05-0456-07
[Abstract](1336) PDF(58)
Application of pulse shaping technique in Hopkinson bar experiments
Guo Chun-huan, Zhou Pei-jun, Lu Zi-chun, Chang Yun-peng, Zou Guang-ping, Jiang Feng-chun
2015, 35(6): 881-887.   doi: 10.11883/1001-1455(2015)06-0881-07
[Abstract](481) PDF(59)
Experimental study on penetration-resistance characteristics of honeycomb shelter
Wang Qifan, Shi Shaoqing, Wang Zheng, Sun Jianhu, Chu Zhaojun
2016, 36(2): 253-258.   doi: 10.11883/1001-1455(2016)02-0253-06
[Abstract](737) [FullText HTML](111) PDF(111)
Numericalsimulationondetonatingshelledexplosives byenergeticfragments
Li Xu-feng, Li Xiang-dong, Gu Wen-bin, Li Yu-chun, Qin Ru-ping
2014, 34(2): 202-208.   doi: 10.11883/1001-1455(2014)02-0202-07
[Abstract](906) PDF(68)
Experimental research on bubble pulse of small scale charge exploded under simulated deep water
Ma Kun, Chu Zhe, Wang Ke-hui, Li Zhi-kang, Zhou Gang
2015, 35(3): 320-325.   doi: 10.11883/1001-1455-(2015)03-0320-06
[Abstract](813) PDF(64)
SPH simulation on the behaviors of projectile water entry
Zhou Jie, Xu Shengli
2016, 36(3): 326-332.   doi: 10.11883/1001-1455(2016)03-0326-07
[Abstract](809) [FullText HTML](187) PDF(187)
Moleculardynamicssimulationonthermaldecompositionmechanism ofCL-20withdifferentpolymorphs
Zhang Li, Chen Lang, Wang Chen, Wu Jun-ying
2014, 34(2): 188-195.   doi: 10.11883/1001-1455(2014)02-0188-07
[Abstract](1044) PDF(49)
Buckling and energy absorption properties of thin-walled corrugated tubes under axial impacting
Hao Wen-qian, Lu Jin-shuai, Huang Rui, Liu Zhi-fang, Wang Zhi-hua
2015, 35(3): 380-385.   doi: 10.11883/1001-1455-(2015)03-0380-06
[Abstract](768) PDF(46)
Numerical simulation on shock waves generated by explosive mixture gas from large nuclear blast load generator based on equivalent-energy principles
Zhang Xiu-hua, Zhang Chun-wei, Duan Zhong-dong
2014, 34(1): 80-86.   doi: 10.11883/1001-1455(2014)01-0080-07
[Abstract](931) PDF(42)
Dynamic analysis of aircraft impacting on concrete structures
Li Xiao-jun, Hou Chun-lin, He Qiu-mei, Mei Ze-hong
2015, 35(2): 215-221.   doi: 10.11883/1001-1455(2015)02-0215-07
[Abstract](950) PDF(46)
Simulation of cook-off for AP/HTPB composition propellant in base bleed unit at different heating rates
Li Wenfeng, Yu Yonggang, Ye Rui, Yang Houwen
2017, 37(1): 46-52.   doi: 10.11883/1001-1455(2017)01-0046-07
[Abstract](499) PDF(44)
Experimental study on expansion characteristics of twin combustion-gas jets in liquid-filled chambers
Xue Xiao-chun, Yu Yong-gang, Zhang Qi
2013, 33(5): 449-455.   doi: 10.11883/1001-1455(2013)05-0449-07
[Abstract](1415) PDF(47)
Effect of airflow characteristics on flame structure for following lycopodium dust-air mixtures in a long horizontal tube
Gao Wei, Abe Shuntaro, Rong Jian-zhong, Dobashi Ritsu
2015, 35(3): 372-379.   doi: 10.11883/1001-1455-(2015)03-0372-08
[Abstract](788) PDF(49)
The ballistic performance of Q235 metal plates subjected to impact by hemispherically-nosed projectiles
Deng Yun-fei, Meng Fan-zhu, Li Jian-feng, Wei Gang
2015, 35(3): 386-392.   doi: 10.11883/1001-1455(2015)03-0386-07
[Abstract](748) PDF(40)
Dynamic buckling of elastic rectangular thin plates subjected to in-plane impact
Mao Liu-wei, Wang An-wen, Deng Lei, Han Da-wei
2014, 34(4): 385-391.   doi: 10.11883/1001-1455(2014)04-0385-07
[Abstract](954) PDF(39)
Influence factors of gas explosion venting in linked vessels
Sun Wei, Wang Zhirong, Ma Longsheng, Liu Minghan, Yang Chenjian
2016, 36(4): 457-464.   doi: 10.11883/1001-1455(2016)04-0457-08
[Abstract](512) [FullText HTML](130) PDF(130)
Research progress of buildings and structures subjected to aircraft impact
Liu Jingbo, Han Pengfei, Lin Li, Lu Xinzheng, Cen Song
2016, 36(2): 269-278.   doi: 10.11883/1001-1455(2016)02-0269-10
[Abstract](989) [FullText HTML](141) PDF(141)
Explosion-driven electromagnetic induction pulse generator
Ben Chi, He Yong, Pan Xuchao, He Yuan, Ling Qi
2016, 36(1): 43-49.   doi: 10.11883/1001-1455(2016)01-0043-07
[Abstract](608) [FullText HTML](187) PDF(187)
Simulation of flyers driven by detonation of copper azide
Jian Guozuo, Zeng Qingxuan, Guo Junfeng, Li Bing, Li Mingyu
2016, 36(2): 248-252.   doi: 10.11883/1001-1455(2016)02-0248-05
[Abstract](709) [FullText HTML](127) PDF(127)
2014, 34(3): 307-314.   doi: 10.11883/1001-1455(2014)03-0307-08
[Abstract](845) PDF(40)
perforation of concrete targets with finite thickness by projectiles deceleration
GE Tao, LIU Bao-Rong, WANG Ming-Yang
2010, 30(2): 159-163.   doi: 10.11883/1001-1455(2010)02-0159-05
[Abstract](2110) PDF(34)
Experiment and numerical simulation on expansion deformation and fracture of cylindrical shell
Ren Guo-wu, Guo Zhao-liang, Zhang Shi-wen, Tang Tie-gang, Jin Shan, Hu Hai-bo
2015, 35(6): 895-900.   doi: 10.11883/1001-1455(2015)06-0895-06
[Abstract](531) PDF(47)
Strain rate and temperature sensitivity and constitutive model of YB-2 of aeronautical acrylic polymer
Shi Fei-fei, Suo Tao, Hou Bing, Li Yu-long
2015, 35(6): 769-776.   doi: 10.11883/1001-1455(2015)06-0769-08
[Abstract](660) PDF(36)
Non-intrusive polynomial chaos methods and its application in the parameters assessment of explosion product JWL
Wang Rui-li, Liu Quan, Wen Wan-zhi
2015, 35(1): 9-15.   doi: 10.11883/1001-1455(2015)01-0009-07
[Abstract](1152) PDF(52)
Two dimensional simulation for shock wave produced by strong explosion in free air
Yao Cheng-bao, Li Ruo, Tian Zhou, Guo Yong-hui
2015, 35(4): 585-590.   doi: 10.11883/1001-1455(2015)04-0585-06
[Abstract](656) PDF(50)
Study of strain energy based shear model for single lap bolt
Kou Jianfeng, Xu Fei, Feng Wei
2017, 37(1): 1-9.   doi: 10.11883/1001-1455(2017)01-0001-09
[Abstract](656) PDF(66)
An analysis of rockburst fracture micromorphology and study of its mechanism
Zhao Kang, Zhao Hong-yu, Jia Qun-yan
2015, 35(6): 913-918.   doi: 10.11883/1001-1455(2015)06-0913-06
[Abstract](627) PDF(55)
Numericalcal culation of early fireball radiation spectrum in strong explosion
Gao Yin-Jun, Yan Kai, Tian Zhou, Liu Feng
2015, 35(3): 289-295.   doi: 10.11883/1001-1455-(2015)03-0289-07
[Abstract](923) PDF(42)
Experimental study on gas explosion hazard under different temperatures and pressures
Gao Na, Zhang Yansong, Hu Yiting
2016, 36(2): 218-223.   doi: 10.11883/1001-1455(2016)02-0218-06
[Abstract](883) [FullText HTML](121) PDF(121)
Deformation with damage and temperature-rise of two types of plastic-bonded explosives under uniaxial compression
Li Tao, Fu Hua, Li Kewu, Gu Yan, Liu Cangli
2017, 37(1): 120-125.   doi: 10.11883/1001-1455(2017)01-0120-06
[Abstract](472) PDF(50)
Numerical simulation on dynamic response of polyurethane/steel sandwich structure under blast loading
Zou Guang-ping, Sun Hang-qi, Chang Zhong-liang, Xiong Hai-lin
2015, 35(6): 907-912.   doi: 10.11883/1001-1455(2015)06-0907-06
[Abstract](577) PDF(52)
A novel auxetic broadside defensive structure for naval ships
Yang De-qing, Ma Tao, Zhang Geng-lin
2015, 35(2): 243-248.   doi: 10.11883/1001-1455(2015)02-0243-06
[Abstract](1098) PDF(56)
Interface treating methods for the gas-water multi-phase flows
Xu Shuang, Zhao Ning, Wang Chun-wu, Wang Dong-hong
2015, 35(3): 326-334.   doi: 10.11883/1001-1455-(2015)03-0326-09
[Abstract](810) PDF(45)
Influence of void coalescence on spall evolution of ductile polycrystalline metal under dynamic loading
Zhang Fengguo, Zhou Hongqiang, Hu Xiaomian, Wang Pei, Shao Jianli, Feng Qijing
2016, 36(5): 596-602.   doi: 10.11883/1001-1455(2016)05-0596-07
[Abstract](587) [FullText HTML](186) PDF(186)
Impact analysis of shock environment from floating shock platform on equipment response
Wang Jun, Yao Xiong-liang, Yang Di
2015, 35(2): 236-242.   doi: 10.11883/1001-1455(2015)02-0236-07
[Abstract](815) PDF(59)
Numerical simulation on penetration of concrete target by shaped charge jet with SPH method
Qiang Hongfu, Fan Shujia, Chen Fuzhen, Liu Hu
2016, 36(4): 516-524.   doi: 10.11883/1001-1455(2016)04-0516-09
[Abstract](661) [FullText HTML](126) PDF(126)
Anti-blast analysis of graded cellular sacrificial cladding
Zhengyu Cai, Yuanyuan Ding, Shilong Wang, Zhijun Zheng, Jilin Yu
2017, 37(3): 396-404.   doi: 10.11883/1001-1455(2017)03-0396-09
[Abstract](1298) [FullText HTML](979) PDF(979)
Simulation on dynamic pressure of premixed methane/air explosion in open-end pipes
Hong Yidu, Lin Baiquan, Zhu Chuanjie
2016, 36(2): 198-209.   doi: 10.11883/1001-1455(2016)02-0198-12
[Abstract](658) [FullText HTML](137) PDF(137)
Simulation of free surface particle velocity of flyer under the strong detonation drive
Yuan Shuai, Wen Shang-gang, Li Ping, Dong Yu-bin
2015, 35(2): 197-202.   doi: 10.11883/1001-1455(2015)02-0197-06
[Abstract](926) PDF(53)
A study of vorticity characteristics of shock-flame interaction
Zhu Yue-jin, Dong Gang
2015, 35(6): 839-845.   doi: 10.11883/1001-1455(2015)06-0839-07
[Abstract](602) PDF(55)
Numerical simulation on mechanism of fractured rock burst in deep underground tunnels
Zhao Hong-liang, Zhou You-he
2015, 35(3): 343-349.   doi: 10.11883/1001-1455-(2015)03-0343-07
[Abstract](703) PDF(46)
Research advances of safety assessment of bridges under blast load
Zhang Yu, Li Guoqiang, Chen Kepeng, Chen Airong
2016, 36(1): 135-144.   doi: 10.11883/1001-1455(2016)01-0135-10
[Abstract](863) [FullText HTML](287) PDF(287)
Compressive deformation behaviors of beryllium
Xiao Dawu, Qiu Zhicong, Wu Xiangchao, He Lifeng
2016, 36(2): 285-288.   doi: 10.11883/1001-1455(2016)02-0285-04
[Abstract](692) [FullText HTML](123) PDF(123)
Numerical simulation on pin-point blasting of sloping surface
Huang Yong-hui, Liu Dian-shu, Li Sheng-lin, Li Xiang-long, Wang Jia-lei
2014, 34(4): 495-500.   doi: 10.11883/1001-1455(2014)04-0495-06
[Abstract](907) PDF(50)
Application of SPH in stress wave simulation
Sun Xiaowang, Zhang Jie, Wang Xiaojun, Li Yongchi, Zhao Kai
2017, 37(1): 10-14.   doi: 10.11883/1001-1455(2017)01-0010-05
[Abstract](653) PDF(56)