• ISSN 1001-1455  CN 51-1148/O3
  • EI Compendex、CA收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Articles in press have been peer-reviewed and accepted, which are not yet assigned to volumes /issues, but are citable by Digital Object Identifier (DOI).
Display Method:
In order toinvestigate whether the reaction evolution of pressed HMX-based PBXs inside long thick wall steel tubeinitiated by ignition composition leads to detonation finally or not, a new experiment apparatus was designed based on traditional DDT tube, in whichstrength at specific locations enhanced, and multichannel PDV probes andhigh speed photography were used to diagnose the expansion processand rupture characteristics of tube wall. Compared with the resultsinitiated by detonator in the same explosives and confinement, the reaction durations of detonation and ignitiondiffered by orders of magnitude; the pressure evolution measured by tube wall velocities, and the propagation process of tube wall movement were significantly different in two reaction.Analysis shows thatthe convective flow of reaction products along the seam between tube wall and explosives, high temperature and pressure, dominated the reaction evolution of PBX-A initiated by ignition composition under strong confinement, and appeared as laminar burning on explosive surface and structural response of confinement.There is no reaction activated in explosive bulk by the ramp wave caused by upper stream non shock initiation reaction, least of all DDT.
The burn rate-pressure characteristic of explosive is the intrinsic factor of ammunition safety, which reflects the potential tendency of the reaction violence developing. We conducted the experiment to understand the deflagration behavior of PBX-1 explosive by the method of burn pressure-burn consumption in closed bomb.The temporal pressure data and burn front time-of-arrival data were recorded by pressure transducer and microthermocouple, which allowing direct calculation of burn rate as a function of pressure. The result shows that the burn rate equation of PBX-1 explosive is r=(2.16±0.55)P1.08±0.06, in which the pressure exponent of PBX-1 n>1 which indicates that burn rate is sensitive to pressure. Over the pressure range 10-100 MPa the burn rate presents linear relations, while at pressure beyond 100 MPa PBX-1 occurs erratic burn with pressure and burn rate sharply rising. The analysis demonstrates that the physical deconsolidation of PBX-1 explosive at high pressure is the main factor, which physically disrupts the sample and results in burn specific surface area increasing over 100 times. PBX-1 explosive has potential tendency of enhancing the reaction violence by convective burning mechanism.
The aim of this paper is to deep understand the pressurization behavior in evolution of crack burning, and promote the acknowledge level for transition mechanism of high intensity reaction in projectile fillings under accidental ignition. Based on qualitative analysis for pressure evolution in explosive crack burning, theoretical calculation is carried out for the pressurization process in crack burning of a HMX-based PBX (with a content of 95% for HMX). Simplified flow model for explosive burning products has been set up based on gas dynamic theory. With the hypothesis of one-dimensional isentropic flow, crack pressurization process has been predicted without regard to viscosity and friction resistance. The calculation result is qualitatively accord with experimental result in pressurization stage, providing a theoretical explanation for understanding the pressurization behavior in crack burning.
High temperature gaseous products of conductive burning on explosive surface can penetrate into preformed crack inside explosive bulk under high pressure to form so-called convective burning. The high rising gaseous products pressure of the convective burning in turn will create cracks inside the explosive bulk to form new channels for convective reaction and more reaction surface for burning. In this paper, a new experimental method is designed for a pressed HMX-based PBX, in which a highly confined spherical charge is ignited on center point with non-shock initiation. The propagation of such kind of reactive cracks inside is recorded and evaluated with the total reaction violence growth behavior characterized by reaction pressure and confinement wall velocity profile. In the experiment with a transparent window, the early stage evolution of crack inside explosive sphere is invisible and the crack system after the crack break through to the spherical surface shows a 4 fold symmetric crack pattern which is deduced to be related with outer layer confinement conjunction manner. The violence evolution experience a sustaining low pressure growing rate stage which last about 100 μs before the confinement movement stage and a rapid burst pressure in about 10 μs is up to over 1 GPa during the confinement wall movement stage, which give to a typical explosion outcome with ~20% of bare explosive detonation calculated by air blast over pressure. In the experiment with a 20 mm steel wall, the velocity of the wall has reached 500 m/s at the moment of confinement wall rupture.
The progress in explosive safety studies related to experiment achievements with precise diagnostics and understanding of non-shock initiation of explosive phenomena in recent 20 years is reviewed. Some widespread misconceptions and misleading in non-shock initiation reaction behavior and corresponding process modeling is commented and suggestions for improvement are given. Recent experiments focused on the reaction propagation and violence evolution conducted by the author’s team in recent years are introduced and interpreted in detail as an illustration of the basic mechanism of non-shock initiation reaction. For low porosity explosive, the abnormal reaction behavior is dominated by the surface conductive burning and the convective flow of hot, high pressure gaseous reaction products through confinement slot and cracks in explosive bulk, which should be taken as the basic kinetics during the reaction propagation and reaction violence growth process. The evolution of reaction violence is unstable when the surface combustion is coupled with the dynamic evolution of crack network in explosive, but the utmost violence is usually limited by the mild conductive combustion rate of typical secondary explosive and confinement failure. Especially, the deflagration to detonation transition could hardly come true in low porosity explosive system with confinement of limited strength.
2019, 39(12): 1-2.  
Read OL PDF (0)
Invited Article & General Review
The huge energy released instantaneously in underground nuclear tests leads to a chain reaction of crustal energy, and results in geophysical phenomena such as induced earthquakes. This paper sorts out and sums up the underground nuclear test data of the Soviet Union and the United States conducted in the 20th century, including the range of engineering earthquakes induced by underground nuclear tests and the size of activating rock blocks. By judging the measured data, the mechanical nature of the engineering earthquake induced by underground nuclear explosion is pointed out and the range of the critical energy factor of irreversible displacement induced by underground nuclear explosion is calculated using the theoretical formula, thereby providing a theoretical basis and site effect test data for relevant researches.
Explosion Physics
The explosion limits of combustible material at elevated temperatures and pressures provide support for perfecting fire and explosion safety theory and improving explosion protection technology. A closed 20 L spherical vessel was designed to measure the explosion limits under abnormal conditions. The explosion limits of ethane/oxygen mixtures at temperatures ranging from 20 to 270 °C and pressures ranging from 0.5 to 2.6 MPa were measured. The influence of temperature, pressure and their coupling effect on the explosion limits in oxygen were analyzed. The results showed that the range of the explosion limits of ethane in oxygen gradually widened as the initial pressures and temperatures increased; the UELs in oxygen changed almost linearly when the initial temperatures were below 140 °C; as the temperature continues to rise, its effect gradually decreased; the UELs in oxygen changed almost linearly when the initial temperatures were below 140 °C; the UELs in oxygen linearly increased when the initial pressures were below 1.6 MPa; the rising rate of UEL increased above 1.6 MPa and 140 °C; the elevated temperatures and pressures decreased the LELs of ethane in oxygen, but their effect was reduced; the coupling effect of the initial temperatures and pressures on the explosion limits of ethane/oxygen mixtures was found slightly less than the sum of the two factors, but far greater than the effect of each individual factor; and the quantitative rules of explosion limits varying with the initial pressures and temperatures were obtained using the fitting formula.
Column is the main bearing member in bridge. It is the premise for analyzing the dynamic response of the bridge under blast loading to study the distribution law of blast load acted on bridge columns. Circular sectional bridge column has been selected as the research object, and the corresponding finite element models have been built by using the LS-DYNA software. When the height of burst is less than 0.3 times of the column height, the scaled distance is 0.5−2.1 m/kg1/3 and the column diameter is 0.15−1 m, the distributions of the blast loading impulse along column height and cross-section direction are obtained through numerical simulations. The influential parameters, e.g., the explosive equivalent, height of burst, explosion distance and sectional diameter, have been considered. It is derived that, along the column height, when the contact burst and the height of burst is 0.1 times of the column height, the blast loading impulse on the column front surface approximately follows the " Single linear” distribution. When the height of burst is 0.2 and 0.3 times of the column height, the blast loading impulse approximately follows the " Double linear” distribution. Along the cross-section direction, the ratio of the average net blast loading impulse to the blast impulse on the column front surface is a constant. Furthermore, the resultant net blast loading impulse of bridge column has been obtained, which can put some theoretical basis for blast-resistant analysis and design of bridge columns.
In this paper we presented a theoretical calculation method for the physical quantities of flow filed after entering the quasi-self-similar stage concerning the interaction between the vertical planar shock wave and the horizontal thermal layer near the rigid wall. Compared with the existing Mirels’ theoretical method, ours has improved in the following three aspects: (1) the propagation process of the shock in the thermal layer is analyzed, and the shock intensity is calculated following the theory of geometrical shock dynamics, whereas the assumption that the propagation speed of the shock in the thermal layer is equal to that of the incident shock is abandoned; (2) an assumption is made that in the coordinate system fixed with the fluid behind the incident shock instead of the incident shock itself, the fluid behind the incident shock evolves into a " piston” under the action of steady isentropic wave, which moves along the wall and drives the thermal layer gas in front of it; and (3) the fluid in the " piston” and its adjacent thermal layer gas satisfy the continuity of pressure and velocity without introducing the velocity proportional coefficient. Our improved method is employed in the cases involving a Mach number 2.00 incident shock and different thermal layer densities, and gives the shock strength in the thermal layer and the field pressure, velocity and density on each side of the material interface. The deviation between the theoretical results and numerical results is below 10% in different thermal layer densities, which is much better than those of the Shreffler’s and Mirels’ methods. For a Mach number 1.36 incident shock with a propagation speed less than the speed of sound in the thermal layer, Shreffler’s and Mirels’ methods are no longer applicable, whereas the above mentioned theoretical mothod could still work and produce results that accord well with experimental data and numerical results, and the maximum deviation is about 20%, indicating that the above improved theoretical method is more reasonable and applicable than the existing theoretical calculation methods.
Impact Dynamics
The mechanical behavior of Al-Mg-Si alloy after long-term neutron irradiation (i.e. LT21 aluminum alloy served in the reactor for nearly 30 years) under compression loading with different temperature and strain rates is experimentally studied using material test system and split Hopkinson pressure bar. The effects of temperature and strain rate on its yield strength and flow stress are obtained. The results show that the material exhibits obvious temperature effect within a temperature rang from −40 ℃ to 300 ℃ and positive strain rate effect in a strain rate rang from 0.001 to 3 000 s−1, respectively. At a lower temperature range (from −80 to −40 ℃) and higher strain rates (from 3 000 to 5 000 s−1), the mechanical properties are insensitive to changes in temperature and strain rate. When the temperature reaches 300 ℃, the plastic deformation behavior of the material tends to ideal plastic flow. Based on the above experimental results, a modified Zerilli-Armstrong constitutive model considering irradiation damage is established by taking into account the effect of microscale irradiation defects on the mechanical properties of materials. The Zerilli-Armstrong model predictions are in good agreement with the experimental results. Furthermore, the yield strength of LT21 aluminum alloy with different fast neutron irradiation doses and the yield strength of another two samples obtained from different irradiated regions within the reactor at different strain rates and temperature are calculated by reference to the evolution of microscale irradiation defects of high purity aluminum. The above research shows that the Zerilli-Armstrong constitutive equation considering radiation damage established in this paper can not only establish the relationship between macroscale stress and strain, strain rate and temperature of the Al-Mg-Si alloy after long-term neutron irradiation, but also describe the dislocation motion and the mechanism of irradiation hardening. It can provide reference for the design, operation and safety evaluation of the corresponding structural elements in the nuclear reactor.
Boron carbide (B4C) ceramic has been widely used in armor fence due to its high hardness and low density. Ballistic performance of B4C ceramic and its composite targets has been one of the focuses recently. Ballistic performance of B4C ceramic composite targets defending 12.7 mm calibre armor-piercing bullets were explored through depth-of-penetration experiments and the corresponding numerical simulation model was established. The numerical simulation model for 12.7 mm calibre armor-piercing bullets penetrating into B4C ceramic composite targets was verified through the comparison between numerical results and experimental data. The influences of target configuration, back layer thickness and type on the ballistic performance of the composite targets were explored. It can be figured out from the results that for the composite targets with same areal density, the thicker the ceramic target, the better its ballistic performance; the increasing rate in the ballistic performance of the ceramic composite target decreases when the areal density increases and the ceramic thickness keeps constant. Ceramic/polyethylene (PE) structures are more suitable for defending against penetration by low-velocity bullets, while ceramic/Al structures are more suitable for defending against penetration by high-velocity bullets.
In order to explore the influence of granite grain size on rockburst, cubic granite specimens with an opening and different grain sizes (fine to medium and medium to coarse) were used to conduct the rockburst tests using the true triaxial rockburst testing system. The experimental results show that the failure process of the fine to medium-grained granite is mainly composed of brittle failure. However, rockburst failure (dynamic failure) dominates the failure for the medium to coarse-grained granite. The acoustic emission (AE) activity in the early loading stage is weak for the fine to medium-grained granite, and the low-frequency large-rupture events are concentrated in time and space, and the characteristic stress is higher. However, the AE activity in the early loading stage is stronger for the medium to coarse-grained granite, and the low-frequency, large-rupture events are more discrete in time and space, and the characteristic stress is lower, and the fragments are broken more. The grain size has an important influence on the rockburst proneness of granites. The hard-brittle rock with coarser grain size has a stronger rockburst proneness. In addition to strength and brittleness, grain size is an important factor to be considered in rockburst proneness evaluation of deep underground rock mass engineering.
Ballistic limit tests were carried out by using a ballistic gun system for the ceramic composite armors obliquely placed with the angles of 0° − 60°. The influences of the oblique angles were analyzed on the ballistic limits, steel core mass change and damage forms of armor-piercing bullets. The numerical simulations were performed to verify the above experimental results. Based on the fact that the calculated results were in agreement with the experimental ones, the influences of the oblique angles were further explored on the deflection angles of the bullet steel cores penetrating through the target plates, and the thicknesses of the equivalent Q235 steel target plates. Results show that with increasing the oblique angles of the ceramic composite targets: (1) the ballistic limit obeys an exponential increase law; (2) at the same ballistic limit, the ratio of the limit penetration depth of the Q235 steel target plate by the armor-piercing bullet to the equivalent thickness of the limit penetration depth of the obliquely-placed ceramic composite target by the armor-piercing bullet increases; (3) the integrity of the bullet steel core decreases gradually, its deflection angle increases reversely.
Water-entry experiments were carried out by adopting five kinds of surface roughness to explore the effects of surface roughness of water-entry spheres on the evolution of cavities induced the water-entry of the spheres and the motion characteristics of the spheres during the water-entry process of the spheres. The experiments were based on an open water-tank test system. Meanwhile, a high-speed camera was used to record the water-entry processes of the spheres with different surface roughness. The evolutions of cavity, splash and motion characteristics of each sphere were obtained. It is found that the closure of cavity and splash will exert a negative acceleration on the sphere. By comparing the displacement, velocity and acceleration curves of the spheres with different surface roughness, it is found that the sphere with the largest surface roughness will move significantly slower than other spheres after the end of slamming, and that the effects of surface roughness on the sphere motion are mainly reflected in the early period of the water-entry. By analyzing the shrinkage of the cavities connected with the free surface of each sphere after cavity seal, it is found that both the shrinking velocity and acceleration curves take on extreme points, and that the larger the surface roughness of the spheres, the earlier the extreme point appears.
Experimental Techniques & Numerical Methods
In order to calculate the cavity sizes for the cylindrical charges in soil, a new method was established to calculate the characteristic cavity sizes for finite-length cylindrical charges in soil. In the new method, the quasi-static model for spherical charges is used to calculate the cavities induced by cylindrical charges. In this method, the characteristic cavity sizes and the plastic zones are calculated at the larger length-to-diameter ratio. The numerical simulation results show that the error decreases with the increase of the length-to-diameter ratio, when the number N of the spherical explosive packages is n and the length-to-diameter ratio is 10 or higher, the error is less than 12.2%. The results also show that the established method can accurately predict the characteristic sizes of the cavities induced by the finite-length cylindrical charge blasting.
Applied Explosion Mechanics
It is believed that the gradient material bumper shows some positive for shielding performance of Whipple shield. The purpose of this paper is to study the hypervelocity impact characteristic of an new Al/Mg impedance-graded materials (area density is equivalent to 1.5 mm thick aluminum alloy) enhanced Whipple shield at 5.0 km/s, and to investigate the main factors in performance improvement, except higher shock pressures and temperature rise in the projectiles caused by the high-acoustic-impedance coating of bumpers. The hypervelocity impact performances of a shield enhanced by Al/Mg impedance-graded materials and an aluminum Whipple shield are investigated experimentally, using a two-stage light gas gun at velocities of 5.0 km/s. The characteristics of perforation on bumper, debris clouds and damage patterns on the rear wall have been studied. The characteristics of the shielding performance produced by Al/Mg shields include four major features: petal-shaped curling in bumper, slight damage of the rear wall, wider expanded area of debris cloud and smaller impact craters. Some theoretical analysis and calculations are performed. Coupling process of shock energy and thermodynamic states are calculated, and wave propagation in the projectile and bumper is discussed. It is found that the shockwave propagation is affected by the shock impedance mismatch in various area density impedance-graded materials bumpers, it can break the projectile into smaller parts and increase the internal energy conversion in the bumpers. It plays an important role in contributing to kinetic energy attenuation. Thus, the preliminary results show that the shielding capability of an Al/Mg shield is greater than that of an aluminum Whipple shield where the bumper has the same areal density.
To provide an optimal direction for the protection design of a projectile-borne recorder, the dynamic response mechanism of the protection system for the projectile-borne recorder under high impact loading was revealed according to the mechanical vibration theory. On the basis of analysis for the load transfer relation, a simplified dynamic response model based on the two-degree-of-freedom spring-mass-damper system was established. To verify the credibility of the model, numerical simulation was carried out, and the parameters of the response model were identified according to the impulse response analysis and the harmonic analysis. Based on the result that the values of the theoretical calculation agreed well with those of the numerical simulation, it was concluded that the proposed model was more suitable to describe the dynamic response characteristics of the protection system under high impact loading. According to the amplitude-frequency response characteristics, the change of the dynamic response characteristics along various parameters was analyzed, which could be applied to guide the protection design of the projectile-borne recorder.
To overcome the high-risk and low-efficiency problems in large-volume ammunition fragmentation tests, a new method was proposed by setting water walls in front of target plates for comprehensively collecting the damage parameters of the fragments. The dynamic simulation software AUTODYN was used to simulate the penetration processes of the fragments into the target plates with the water walls and without the water walls. The influences of the thickness of the water wall and the incident angle of the fragment on the penetration capability was analyzed, and the effectiveness of the proposed method was verified by the test. The calculation results show that compared with the target plates without the water walls, the target plates with the water walls can greatly reduce the penetration capability of fragments. The results are also in good agreement with the test data, which indicates that it is feasible to use the target plates with the water walls to collect the damage parameters of the fragments in the actual tests.
A sandwich composite armor consisting of an 8 mm thickness front titanium alloy plate, a 60 kg/m2 planar density high-strength polyethylene fiber reinforced composite laminate core layer and an 8 mm thickness rear steel plate was used to simulate the structures of composite sandwich bulkheads on ship sides. According to whether there was an interspace of 20 mm between the panel and the core, the composite armor structures were defined as non-interspace type, back interspace type and front-back interspace type. In order to study the anti-penetration performance and failure mechanism of the above three structures under high-speed impact of a cylindrical projectile with the mass of 55 g, a series of ballistic tests were carried out. The failure modes of the titanium alloy plate, the ultra-high molecular weight polyethylene fiber-reinforced composite laminate core, and the steel panel were analyzed, and the influence of the structural interspace on the anti-penetration performances of the composite armor structures was obtained. The results show that the failure mode of the front titanium alloy plate is shear plugging, brittle fracture occurs on the bullet surface of the target plate and is accompanied by debris collapse; that the failure mode of the polyethylene fiber reinforced composite plate and the deformation range of the steel back plate are greatly affected by the interspace, while the front titanium alloy plate is less affected by the interspace; and that the existence of interspace is beneficial to improve the anti-penetration performances of the composite armor structures.
Experimentalinvestigationonprojectileshigh-velocitypenetration intoconcretetarget
HE Xiang, XU Xiang-yun, SUN Gui-juan, SHEN Jun, YANG Jian-chao, JIN Dong-liang
2010, 30(1): 1-6.   doi: 10.11883/1001-1455(2010)01-0001-06
[Abstract](560) PDF(380)
KUAI Nian-sheng, HUANG Wei-xing, YUAN Jing-jie
2012, 32(4): 432-438.   doi: 10.11883/1001-1455(2012)04-0432-07
[Abstract](507) PDF(307)
ZHANG Wei, XIAO Xin-ke, WEI Gang
2011, 31(1): 81-87.   doi: 10.11883/1001-1455(2011)01-0081-07
[Abstract](579) PDF(305)
Review of the development of Hopkinson pressure bar technique in China
Hu Shi-sheng, Wang Li-li, Song Li, Zhang Lei
2014, 34(6): 641-657.   doi: 10.11883/1001-1455(2014)06-0641-17
[Abstract](1382) PDF(1272)
Experimentalinvestigationsonbehaviors ofprojectilehigh-speedwaterentry
ZHANG Wei, GUO Zi-tao, XIAO Xin-ke, WANG Cong
2011, 31(6): 579-584.   doi: 10.11883/1001-1455(2011)06-0579-06
[Abstract](601) PDF(242)
Explosion characteristics of coal dust in a sealed vessel
GAO Cong, LI Hua, SU Dan, HUANG Wei-Xing
2010, 30(2): 164-168.   doi: 10.11883/1001-1455(2010)02-0164-05
[Abstract](3190) PDF(2338)
ZHONG Dong-wang, WU Liang, YU Gang
2010, 30(5): 456-462.   doi: 10.11883/1001-1455(2010)05-0456-07
[Abstract](454) PDF(203)
Acoustic emission experiment of rock failure under coupled static-dynamic load
WANG Qi-Sheng, WAN Guo-Xiang, LI Xi-Bing
2010, 30(3): 247-253.   doi: 10.11883/1001-1455(2010)03-0247-07
[Abstract](3558) PDF(2280)
YANG Jian-hua, LU Wen-bo, CHEN Ming, ZHOU Chuang-bing
2012, 32(2): 157-163.   doi: 10.11883/1001-1455(2012)02-0157-07
[Abstract](516) PDF(278)
Damage characteristics of sandwich bulkhead under the impact of shock and high-velocity fragments
Hou Hai-liang, Zhang Cheng-liang, Li Mao, Hu Nian-ming, Zhu Xi
2015, 35(1): 116-123.   doi: 10.11883/1001-1455(2015)01-0116-08
[Abstract](664) PDF(541)
Design and impact analysis of a high-g accelerometer
SHI Yun-Bo, ZHU Zheng-Qiang, LIU Xiao-Peng, DU Kang, LIU Jun
2010, 30(3): 329-332.   doi: 10.11883/1001-1455(2010)03-0329-04
[Abstract](4701) PDF(209)
Damage modes of stiffened plates subjected to underwater explosion load
ZHU Xi, MOU Jin-Lei, WANG Heng, ZHANG Zhen-Hua
2010, 30(3): 225-231.   doi: 10.11883/1001-1455(2010)03-0225-07
[Abstract](4266) PDF(119)
Large eddy simulation for the multi-viscosity-fluid and turbulence
BAI Jin-Song, WANG Tao, ZOU Li-Yong, LI Ping
2010, 30(3): 262-268.   doi: 10.11883/1001-1455(2010)03-0262-07
[Abstract](3650) PDF(130)
Dynamic response of foam sandwich plates subjected to impact loading
SONG Yan-Ze, WANG Zhi-Hua, ZHAO Long-Mao, ZHAO Yong-Gang
2010, 30(3): 301-307.   doi: 10.11883/1001-1455(2010)03-0301-07
[Abstract](3758) PDF(197)
On dynamic structural response of an airplane landing onto water
He-Qian, LI Yuan-Sheng, LI Lei, YUE Zhu-Feng
2010, 30(2): 125-130.   doi: 10.11883/1001-1455(2010)02-0125-06
[Abstract](2704) PDF(132)
Characteristics of ultra-high performance cementitious composites under explosion
RONG Zhi-Dan, SUN Wei, ZHANG Yun-Sheng, ZHANG Wen-Hua
2010, 30(3): 232-238.   doi: 10.11883/1001-1455(2010)03-0232-07
[Abstract](3867) PDF(127)
Explosion characteristics of coal dust in a sealed vessel
GAO Cong, LI Hua, SU Dan, HUANG Wei-Xing
2010, 30(2): 164-168.   doi: 10.11883/1001-1455(2010)02-0164-05
[Abstract](3190) PDF(122)
Design and realization of an acceleration measurement system by using Model 1221
ZHU Yi-Chao, GAO Cheng, LI Yan-Xin, CHEN Yong-Guang
2010, 30(3): 333-336.   doi: 10.11883/1001-1455(2010)03-0333-04
[Abstract](3357) PDF(126)
Acoustic emission experiment of rock failure under coupled static-dynamic load
WANG Qi-Sheng, WAN Guo-Xiang, LI Xi-Bing
2010, 30(3): 247-253.   doi: 10.11883/1001-1455(2010)03-0247-07
[Abstract](3558) PDF(122)
A calculation method for supercavity profile about a slender cone-shaped projectile traveling in water at subsonic speed
ZHANG Zhi-Hong, MENG Qing-Chang, GU Jian-Nong, WANG Chong
2010, 30(3): 254-261.   doi: 10.11883/1001-1455(2010)03-0254-08
[Abstract](3505) PDF(108)
Explosion mechanism of carbon powder
LAI Cheng-Feng, DUAN Zi-Hua, ZHANG Yong-Fa, ZHANG Lao-Lao
2010, 30(3): 325-328.   doi: 10.11883/1001-1455(2010)03-0325-04
[Abstract](3476) PDF(128)
ZHANG Ding-Shan, WANG Hao, FENG Guo-Zeng, LIU Bin, GUO Jin-Yan
2010, 30(3): 314-319.   doi: 10.11883/1001-1455(2010)03-0314-06
[Abstract](3288) PDF(137)
Penetration of cylindrical-nose-tip projectiles into concrete targets
SUN Chuan-Jie, LU Yong-Gang, ZHANG Fang-Ju, LI Hui-Min
2010, 30(3): 269-275.   doi: 10.11883/1001-1455(2010)03-0269-07
[Abstract](3688) PDF(108)
Three-dimensional discrete element simulation of hot spots in explosives under shock loading
SHANG Hai-Lin, ZHAO Feng, WANG Wen-Qiang, FU Hua
2010, 30(2): 131-137.   doi: 10.11883/1001-1455(2010)02-0131-07
[Abstract](2788) PDF(129)
Performance of a 60 kJ electric gun
CHEN Lin, DAI Ying-Min, SU Jian-Jun, FENG Shu-Ping, XIE Wei-Ping, WANG Hui, REN Jing, WU Shou-Dong, LI Ye
2010, 30(3): 283-287.   doi: 10.11883/1001-1455(2010)03-0283-05
[Abstract](5030) PDF(129)
Dynamic deformations of 921A steel pure shear hat-shaped specimen in SHPB tests
LI Ji-Cheng, CHEN Xiao-Wei, CHEN Gang
2010, 30(3): 239-246.   doi: 10.11883/1001-1455(2010)03-0239-08
[Abstract](3760) PDF(133)
Prediction of the lower flammability limits of hydrocarbons based on the quantitative structure-property relationship studies
PAN Yong, JIANG Jun-Cheng, WANG Rui
2010, 30(3): 288-294.   doi: 10.11883/1001-1455(2010)03-0288-07
[Abstract](3412) PDF(134)
Application of DCD scheme to computation of two-phase flow interior ballistics for fractured propellant bed
YUAN Lai-Feng, RUI Xiao-Ting, WANG Guo-Ping, CHEN Tao
2010, 30(3): 295-300.   doi: 10.11883/1001-1455(2010)03-0295-06
[Abstract](3212) PDF(132)
Theory analysis on shock-induced chemical reaction of reactive metal
ZHANG Xian-Feng, ZHAO Xiao-Ning, QIAO Liang
2010, 30(2): 145-151.   doi: 10.11883/1001-1455(2010)02-0145-07
[Abstract](2937) PDF(150)
Effects of reinforcement ratio and impact position on anti-penetration properties of reinforced concrete
Lou-Jian-Feng, WANG Zheng, ZHU Jian-Shi, ZHANG Feng-Guo, HONG Tao
2010, 30(2): 178-182.   doi: 10.11883/1001-1455(2010)02-0178-05
[Abstract](2628) PDF(123)
Effect of different explosion or shock seismic inputs on efficiency of a whole vibration-isolating system
DU Jian-Guo, XIE Qing-Liang, FENG Jin-Ji, LI Li-Sha
2010, 30(3): 276-282.   doi: 10.11883/1001-1455(2010)03-0276-07
[Abstract](3361) PDF(97)
Shock wave propagation characteristics in C30 concrete under plate impact loading
WANG Yong-Gang, WANG Li-Li
2010, 30(2): 119-124.   doi: 10.11883/1001-1455(2010)02-0119-06
[Abstract](3056) PDF(106)
Review on research and development of water-entry impact problem
WANG Yong-hu, SHI Xiu-hua
2008, 28(3): 276-282.   doi: 10.11883/1001-1455(2008)03-0276-07
[Abstract](937) PDF(167)
Pressure desensitization of emulsion explosives sensitized by compound sensitizers
WANG Yin-Jun, LI Yu-Jing, GAN De-Huai
2010, 30(3): 308-313.   doi: 10.11883/1001-1455(2010)03-0308-06
[Abstract](4250) PDF(102)
Effects of plane shock loading on structure of Ti6Al4V alloy
WEN Xia, YANG Shi-Yuan, WANG Jun-Xia, ZHANG Lin, LIU Xiao-Nan
2010, 30(3): 320-324.   doi: 10.11883/1001-1455(2010)03-0320-05
[Abstract](3306) PDF(131)
Blast resistance of large underground rock caverns in hydraulic power stations
ZHAO Bao-You, MA Zhen-Yue, LIANG Bing, XU Wei, XU Xin-Yong
2010, 30(2): 183-190.   doi: 10.11883/1001-1455(2010)02-0183-08
[Abstract](2461) PDF(110)
Kinetics of isothermal phase transition of HMX based on quantitative phase analysis using the Rietveld method
XUE Chao, SUN Jie, SONG Gong-Bao, KANG Bin, XIA Yun-Xia
2010, 30(2): 113-118.   doi: 10.11883/1001-1455(2010)02-0113-06
[Abstract](2803) PDF(135)
Review of the development of Hopkinson pressure bar technique in China
Hu Shi-sheng, Wang Li-li, Song Li, Zhang Lei
2014, 34(6): 641-657.   doi: 10.11883/1001-1455(2014)06-0641-17
[Abstract](1382) PDF(129)
Deflagration characteristics of a preheated CO-air mixture in a duct
ZHANG Liang, WEI Xiao-Lin, YU Li-Xin, ZHANG Yu, LI Teng, LI Bo
2010, 30(2): 191-196.   doi: 10.11883/1001-1455(2010)02-0191-06
[Abstract](2677) PDF(148)
Power capability and parameters of JWL equation of state for RDX-based PBX
Wang Xinying, Wang Shushan, Xu Yuxin, Hu Sai
2016, 36(2): 242-247.   doi: 10.11883/1001-1455(2016)02-0242-06
[Abstract](1665) [FullText HTML](385) PDF(385)
Failure mechanism of single-layer reticulated domes subjected to impact loads
Wang-Duo-Zhi, FAN Feng, ZHI Xu-Dong, SHEN Shi-Zhao
2010, 30(2): 169-177.   doi: 10.11883/1001-1455(2010)02-0169-09
[Abstract](2658) PDF(136)
Experiments and numerical simulations of sympathetic detonation of explosives in shell
WANG Chen, WU Jun-Ying, CHEN Lang, LU Jian-Ying, GUO Xin, WANG Xiao-Feng
2010, 30(2): 152-158.   doi: 10.11883/1001-1455(2010)02-0152-07
[Abstract](3239) PDF(144)
Dynamic response of woven Kevlar/Epoxy composite laminatesunder impact loading
Ma Xiaomin, Li Shiqiang, Li Xin, Wang Zhihua, Wu Guiying
2016, 36(2): 170-176.   doi: 10.11883/1001-1455(2016)02-0170-07
[Abstract](1119) [FullText HTML](465) PDF(465)
Multiple elastic-plastic impacts of a simply supported beam struck by a round-nosed mass
LIU Zhong-Hua, YIN Xiao-Chun
2010, 30(2): 138-144.   doi: 10.11883/1001-1455(2010)02-0138-07
[Abstract](2426) PDF(119)
FEM analysis of impact experiments with steel plated concrete walls based on ANSYS/LS-DYNA
Zhu Xiu-yun, Pan Rong, Lin Gao, Li Liang
2015, 35(2): 222-228.   doi: 10.11883/1001-1455(2015)02-0222-07
[Abstract](1806) PDF(149)
Formationandterminaleffectofanexplosively-formedpenetrator madebyenergeticmaterials
Wan Wen-qian, Yu Dao-qiang, Peng Fei, Wang Wei-ming, Yang Tian-hai
2014, 34(2): 235-240.   doi: 10.11883/1001-1455(2014)02-0235-06
[Abstract](1161) PDF(120)
Deformation and failure of reinforced concrete beams under blast loading
Li Meng-shen, Li Jie, Li Hong, Shi Cun-cheng, Zhang Ning
2015, 35(2): 177-183.   doi: 10.11883/1001-1455(2015)02-0177-07
[Abstract](1069) PDF(107)
Talk about dynamic strength and damage evolution
Lili Wang, Shisheng Hu, Liming Yang, Xinlong Dong, Hui Wang
2017, 37(2): 169-179.   doi: 10.11883/1001-1455(2017)02-0169-11
[Abstract](2128) [FullText HTML](1428) PDF(1428)
Dynamic caustic experiment on fracture behaviors of flawed material induced by pre-notched blasting
Yang Renshu, Xu Peng, Yang Liyun, Chen Cheng
2016, 36(2): 145-152.   doi: 10.11883/1001-1455(2016)02-0145-08
[Abstract](1455) [FullText HTML](430) PDF(430)
Dynamic behavior of concrete under static triaxial loadingusing 3D-Hopkinson bar
Songlin Xu, Pengfei Wang, Jian Zhao, Shisheng Hu
2017, 37(2): 180-185.   doi: 10.11883/1001-1455(2017)02-0180-06
[Abstract](1759) [FullText HTML](1185) PDF(1185)
Correlation between the critical tube diameter and annular interval for detonation wave in high-concentration argon diluted mixtures
Yu Jian-liang, Gao Yuan, Yan Xing-qing, Gao Wei
2015, 35(4): 603-608.   doi: 10.11883/1001-1455(2015)04-0603-06
[Abstract](996) PDF(139)
Numerical analysis on liquid sloshing in storage container by nonlinear dynamics method
Li Wen-sheng, Zhao You-qing, Jia Shan-po, Wang Kai, Tan Ji-ke
2014, 34(1): 86-92.  
[Abstract](1274) PDF(142)
Sensitivity analysis for impact resistance of steel plate concrete walls based on force vs. time-history analysis
Zhu Xiuyun, Lin Gao, Pan Rong, Lu Yu
2016, 36(5): 670-679.   doi: 10.11883/1001-1455(2016)05-0670-10
[Abstract](992) [FullText HTML](559) PDF(559)
One-dimensional yield behavior of MDYB-3 polymethyl methacrylate at different strain rates
Deng Xiao-Qiu, Li Zhi-Qiang, Zhou Zhi-Wei, Wang Zhi-Hua, Yao Xiao-Hu
2015, 35(3): 312-319.   doi: 10.11883/1001-1455-(2015)03-0312-08
[Abstract](1082) PDF(109)
One parameter-obtained method for JWL equation of state considered detonation parameters
Nan Yu-xiang, Jiang Jian-wei, Wang Shu-you, Men Jian-bing
2015, 35(2): 157-163.   doi: 10.11883/1001-1455(2015)02-0157-07
[Abstract](1034) PDF(134)
Review of pyroshock simulation andresponse prediction methods in spacecraft
Zhao Xin, Ding Jifeng, Han Zengyao, Zou Yuanjie
2016, 36(2): 259-268.   doi: 10.11883/1001-1455(2016)02-0259-10
[Abstract](1189) [FullText HTML](436) PDF(436)
Effects of reflected wave on premixed-gas explosion and dynamic response of tube shells
Zhou Ning, Zhang Bingbing, Feng Lei, Geng Ying, Jiang Shuai, Zhang Lu
2016, 36(4): 541-547.   doi: 10.11883/1001-1455(2016)04-0541-07
[Abstract](837) [FullText HTML](440) PDF(440)
Theoretical studies for calculating the detonation products and properties of explosives
Du Ming-ran, Wang Xu-guang, Guo Zi-ru, Yan Shi-long
2015, 35(4): 449-453.   doi: 10.11883/1001-1455(2015)04-0449-05
[Abstract](1055) PDF(144)
Energy-absorbing structure design and crashworthiness analysis of high-speed trains
Li Song-yan, Zheng Zhi-jun, Yu Ji-lin
2015, 35(2): 164-170.   doi: 10.11883/1001-1455(2015)02-0164-07
[Abstract](1274) PDF(160)
Study on the model of hot-spot ignition based on friction generated heat on the microcrack face
Lou Jian-feng, Zhang Yan-geng, Hong Tao, Zhou Ting-ting, Guo Shao-dong
2015, 35(6): 807-811.   doi: 10.11883/1001-1455(2015)06-0807-05
[Abstract](900) PDF(116)
Jiang Qi, Liu Tong, Wang Ru-heng, Pan Ting
2014, 34(2): 229-234.   doi: 10.11883/1001-1455(2014)02-0229-06
[Abstract](1146) PDF(147)
Material key parameters measurement method in the dynamic tensile testing at intermediate strain rates
Bai Chun-yu, Liu Xiao-chuan, Zhou Su-feng, Li Wei-ming, Shu Wan
2015, 35(4): 507-512.   doi: 10.11883/1001-1455(2015)04-0507-06
[Abstract](833) PDF(128)
Ma Qing-peng, He Chun-tao, Wang Cong, Wei Ying-jie, Lu Zhong-lei, Sun Jian
2014, 34(2): 174-180.   doi: 10.11883/1001-1455(2014)02-0174-07
[Abstract](1265) PDF(154)
Constitutive model of transparent aviation polyurethane at high strain rates
Zhang Long-hui, Zhang Xiao-qing, Yao Xiao-hu, Zang Shu-guang
2015, 35(1): 51-56.   doi: 10.11883/1001-1455(2015)01-0051-06
[Abstract](1329) PDF(147)
Experimental research on bubble pulse of small scale charge exploded under simulated deep water
Ma Kun, Chu Zhe, Wang Ke-hui, Li Zhi-kang, Zhou Gang
2015, 35(3): 320-325.   doi: 10.11883/1001-1455-(2015)03-0320-06
[Abstract](1097) PDF(142)
Numerical analysis of dynamic response and impact resistance of a large-span rock shed in a tunnel under rockfall impact
Wang Shuang, Zhou Xiaojun, Jiang Bo, Zhou Yuefeng
2016, 36(4): 548-556.   doi: 10.11883/1001-1455(2016)04-0548-09
[Abstract](801) [FullText HTML](432) PDF(432)
Experiment and numerical simulation on ignition of charge by fragment impact
Sun Bao-ping, Duan Zhuo-ping, Zhang Hai-ying, Liu Yan, Huang Feng-lei
2013, 33(5): 456-462.   doi: 10.11883/1001-1455(2013)05-0456-07
[Abstract](1569) PDF(143)
Application of pulse shaping technique in Hopkinson bar experiments
Guo Chun-huan, Zhou Pei-jun, Lu Zi-chun, Chang Yun-peng, Zou Guang-ping, Jiang Feng-chun
2015, 35(6): 881-887.   doi: 10.11883/1001-1455(2015)06-0881-07
[Abstract](713) PDF(131)
Experimental study on penetration-resistance characteristics of honeycomb shelter
Wang Qifan, Shi Shaoqing, Wang Zheng, Sun Jianhu, Chu Zhaojun
2016, 36(2): 253-258.   doi: 10.11883/1001-1455(2016)02-0253-06
[Abstract](1047) [FullText HTML](427) PDF(427)
Moleculardynamicssimulationonthermaldecompositionmechanism ofCL-20withdifferentpolymorphs
Zhang Li, Chen Lang, Wang Chen, Wu Jun-ying
2014, 34(2): 188-195.   doi: 10.11883/1001-1455(2014)02-0188-07
[Abstract](1288) PDF(139)
Numericalsimulationondetonatingshelledexplosives byenergeticfragments
Li Xu-feng, Li Xiang-dong, Gu Wen-bin, Li Yu-chun, Qin Ru-ping
2014, 34(2): 202-208.   doi: 10.11883/1001-1455(2014)02-0202-07
[Abstract](1132) PDF(130)
Buckling and energy absorption properties of thin-walled corrugated tubes under axial impacting
Hao Wen-qian, Lu Jin-shuai, Huang Rui, Liu Zhi-fang, Wang Zhi-hua
2015, 35(3): 380-385.   doi: 10.11883/1001-1455-(2015)03-0380-06
[Abstract](1059) PDF(138)
SPH simulation on the behaviors of projectile water entry
Zhou Jie, Xu Shengli
2016, 36(3): 326-332.   doi: 10.11883/1001-1455(2016)03-0326-07
[Abstract](1231) [FullText HTML](512) PDF(512)
Simulation of cook-off for AP/HTPB composition propellant in base bleed unit at different heating rates
Li Wenfeng, Yu Yonggang, Ye Rui, Yang Houwen
2017, 37(1): 46-52.   doi: 10.11883/1001-1455(2017)01-0046-07
[Abstract](778) [FullText HTML](153) PDF(153)
Numerical simulation on shock waves generated by explosive mixture gas from large nuclear blast load generator based on equivalent-energy principles
Zhang Xiu-hua, Zhang Chun-wei, Duan Zhong-dong
2014, 34(1): 80-86.   doi: 10.11883/1001-1455(2014)01-0080-07
[Abstract](1183) PDF(118)
Dynamic analysis of aircraft impacting on concrete structures
Li Xiao-jun, Hou Chun-lin, He Qiu-mei, Mei Ze-hong
2015, 35(2): 215-221.   doi: 10.11883/1001-1455(2015)02-0215-07
[Abstract](1169) PDF(110)
Effect of airflow characteristics on flame structure for following lycopodium dust-air mixtures in a long horizontal tube
Gao Wei, Abe Shuntaro, Rong Jian-zhong, Dobashi Ritsu
2015, 35(3): 372-379.   doi: 10.11883/1001-1455-(2015)03-0372-08
[Abstract](1031) PDF(121)
The ballistic performance of Q235 metal plates subjected to impact by hemispherically-nosed projectiles
Deng Yun-fei, Meng Fan-zhu, Li Jian-feng, Wei Gang
2015, 35(3): 386-392.   doi: 10.11883/1001-1455(2015)03-0386-07
[Abstract](979) PDF(126)
Experimental study on expansion characteristics of twin combustion-gas jets in liquid-filled chambers
Xue Xiao-chun, Yu Yong-gang, Zhang Qi
2013, 33(5): 449-455.   doi: 10.11883/1001-1455(2013)05-0449-07
[Abstract](1629) PDF(111)
Dynamic buckling of elastic rectangular thin plates subjected to in-plane impact
Mao Liu-wei, Wang An-wen, Deng Lei, Han Da-wei
2014, 34(4): 385-391.   doi: 10.11883/1001-1455(2014)04-0385-07
[Abstract](1174) PDF(102)
Influence factors of gas explosion venting in linked vessels
Sun Wei, Wang Zhirong, Ma Longsheng, Liu Minghan, Yang Chenjian
2016, 36(4): 457-464.   doi: 10.11883/1001-1455(2016)04-0457-08
[Abstract](801) [FullText HTML](451) PDF(451)
Research progress of buildings and structures subjected to aircraft impact
Liu Jingbo, Han Pengfei, Lin Li, Lu Xinzheng, Cen Song
2016, 36(2): 269-278.   doi: 10.11883/1001-1455(2016)02-0269-10
[Abstract](1282) [FullText HTML](458) PDF(458)
2014, 34(3): 307-314.   doi: 10.11883/1001-1455(2014)03-0307-08
[Abstract](1078) PDF(124)
Simulation of flyers driven by detonation of copper azide
Jian Guozuo, Zeng Qingxuan, Guo Junfeng, Li Bing, Li Mingyu
2016, 36(2): 248-252.   doi: 10.11883/1001-1455(2016)02-0248-05
[Abstract](1059) [FullText HTML](463) PDF(463)
Explosion-driven electromagnetic induction pulse generator
Ben Chi, He Yong, Pan Xuchao, He Yuan, Ling Qi
2016, 36(1): 43-49.   doi: 10.11883/1001-1455(2016)01-0043-07
[Abstract](923) [FullText HTML](566) PDF(566)
perforation of concrete targets with finite thickness by projectiles deceleration
GE Tao, LIU Bao-Rong, WANG Ming-Yang
2010, 30(2): 159-163.   doi: 10.11883/1001-1455(2010)02-0159-05
[Abstract](2356) PDF(110)
Experiment and numerical simulation on expansion deformation and fracture of cylindrical shell
Ren Guo-wu, Guo Zhao-liang, Zhang Shi-wen, Tang Tie-gang, Jin Shan, Hu Hai-bo
2015, 35(6): 895-900.   doi: 10.11883/1001-1455(2015)06-0895-06
[Abstract](767) PDF(127)
Strain rate and temperature sensitivity and constitutive model of YB-2 of aeronautical acrylic polymer
Shi Fei-fei, Suo Tao, Hou Bing, Li Yu-long
2015, 35(6): 769-776.   doi: 10.11883/1001-1455(2015)06-0769-08
[Abstract](947) PDF(125)
Non-intrusive polynomial chaos methods and its application in the parameters assessment of explosion product JWL
Wang Rui-li, Liu Quan, Wen Wan-zhi
2015, 35(1): 9-15.   doi: 10.11883/1001-1455(2015)01-0009-07
[Abstract](1378) PDF(130)
Study of strain energy based shear model for single lap bolt
Kou Jianfeng, Xu Fei, Feng Wei
2017, 37(1): 10-14.   doi: 10.11883/1001-1455(2017)01-0001-09
[Abstract](926) [FullText HTML](190) PDF(190)
Two dimensional simulation for shock wave produced by strong explosion in free air
Yao Cheng-bao, Li Ruo, Tian Zhou, Guo Yong-hui
2015, 35(4): 585-590.   doi: 10.11883/1001-1455(2015)04-0585-06
[Abstract](918) PDF(145)
An analysis of rockburst fracture micromorphology and study of its mechanism
Zhao Kang, Zhao Hong-yu, Jia Qun-yan
2015, 35(6): 913-918.   doi: 10.11883/1001-1455(2015)06-0913-06
[Abstract](863) PDF(125)
Numericalcal culation of early fireball radiation spectrum in strong explosion
Gao Yin-Jun, Yan Kai, Tian Zhou, Liu Feng
2015, 35(3): 289-295.   doi: 10.11883/1001-1455-(2015)03-0289-07
[Abstract](1152) PDF(116)
Experimental study on gas explosion hazard under different temperatures and pressures
Gao Na, Zhang Yansong, Hu Yiting
2016, 36(2): 218-223.   doi: 10.11883/1001-1455(2016)02-0218-06
[Abstract](1272) [FullText HTML](455) PDF(455)
Deformation with damage and temperature-rise of two types of plastic-bonded explosives under uniaxial compression
Li Tao, Fu Hua, Li Kewu, Gu Yan, Liu Cangli
2017, 37(1): 120-125.   doi: 10.11883/1001-1455(2017)01-0120-06
[Abstract](732) [FullText HTML](178) PDF(178)
Numerical simulation on dynamic response of polyurethane/steel sandwich structure under blast loading
Zou Guang-ping, Sun Hang-qi, Chang Zhong-liang, Xiong Hai-lin
2015, 35(6): 907-912.   doi: 10.11883/1001-1455(2015)06-0907-06
[Abstract](817) PDF(141)
A novel auxetic broadside defensive structure for naval ships
Yang De-qing, Ma Tao, Zhang Geng-lin
2015, 35(2): 243-248.   doi: 10.11883/1001-1455(2015)02-0243-06
[Abstract](1337) PDF(125)
Interface treating methods for the gas-water multi-phase flows
Xu Shuang, Zhao Ning, Wang Chun-wu, Wang Dong-hong
2015, 35(3): 326-334.   doi: 10.11883/1001-1455-(2015)03-0326-09
[Abstract](1039) PDF(128)
Influence of void coalescence on spall evolution of ductile polycrystalline metal under dynamic loading
Zhang Fengguo, Zhou Hongqiang, Hu Xiaomian, Wang Pei, Shao Jianli, Feng Qijing
2016, 36(5): 596-602.   doi: 10.11883/1001-1455(2016)05-0596-07
[Abstract](915) [FullText HTML](469) PDF(469)
Anti-blast analysis of graded cellular sacrificial cladding
Zhengyu Cai, Yuanyuan Ding, Shilong Wang, Zhijun Zheng, Jilin Yu
2017, 37(3): 396-404.   doi: 10.11883/1001-1455(2017)03-0396-09
[Abstract](1618) [FullText HTML](1365) PDF(1365)
Impact analysis of shock environment from floating shock platform on equipment response
Wang Jun, Yao Xiong-liang, Yang Di
2015, 35(2): 236-242.   doi: 10.11883/1001-1455(2015)02-0236-07
[Abstract](1048) PDF(132)
Numerical simulation on penetration of concrete target by shaped charge jet with SPH method
Qiang Hongfu, Fan Shujia, Chen Fuzhen, Liu Hu
2016, 36(4): 516-524.   doi: 10.11883/1001-1455(2016)04-0516-09
[Abstract](961) [FullText HTML](394) PDF(394)
Simulation of free surface particle velocity of flyer under the strong detonation drive
Yuan Shuai, Wen Shang-gang, Li Ping, Dong Yu-bin
2015, 35(2): 197-202.   doi: 10.11883/1001-1455(2015)02-0197-06
[Abstract](1175) PDF(137)
Simulation on dynamic pressure of premixed methane/air explosion in open-end pipes
Hong Yidu, Lin Baiquan, Zhu Chuanjie
2016, 36(2): 198-209.   doi: 10.11883/1001-1455(2016)02-0198-12
[Abstract](1002) [FullText HTML](457) PDF(457)
A study of vorticity characteristics of shock-flame interaction
Zhu Yue-jin, Dong Gang
2015, 35(6): 839-845.   doi: 10.11883/1001-1455(2015)06-0839-07
[Abstract](836) PDF(121)
Research advances of safety assessment of bridges under blast load
Zhang Yu, Li Guoqiang, Chen Kepeng, Chen Airong
2016, 36(1): 135-144.   doi: 10.11883/1001-1455(2016)01-0135-10
[Abstract](1359) [FullText HTML](681) PDF(681)
Numerical simulation on mechanism of fractured rock burst in deep underground tunnels
Zhao Hong-liang, Zhou You-he
2015, 35(3): 343-349.   doi: 10.11883/1001-1455-(2015)03-0343-07
[Abstract](925) PDF(119)
Application of SPH in stress wave simulation
Sun Xiaowang, Zhang Jie, Wang Xiaojun, Li Yongchi, Zhao Kai
2017, 37(1): 21-26.   doi: 10.11883/1001-1455(2017)01-0010-05
[Abstract](923) [FullText HTML](169) PDF(169)
Compressive deformation behaviors of beryllium
Xiao Dawu, Qiu Zhicong, Wu Xiangchao, He Lifeng
2016, 36(2): 285-288.   doi: 10.11883/1001-1455(2016)02-0285-04
[Abstract](1099) [FullText HTML](455) PDF(455)
Numerical simulation on pin-point blasting of sloping surface
Huang Yong-hui, Liu Dian-shu, Li Sheng-lin, Li Xiang-long, Wang Jia-lei
2014, 34(4): 495-500.   doi: 10.11883/1001-1455(2014)04-0495-06
[Abstract](1130) PDF(122)