• ISSN 1001-1455  CN 51-1148/O3
  • EI Compendex、CA收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊
Articles in press have been peer-reviewed and accepted, which are not yet assigned to volumes /issues, but are citable by Digital Object Identifier (DOI).
Display Method:
Abstract:
Two kinds of soft oxygen-free copper tubes with average grain size of 100-300 micron and 20-30 micron were used to fabricate standard copper tubes for \begin{document}$\varnothing $\end{document}25 mm cylinder test. The differences of expansion displacement and specific kinetic energy curves of the two kinds of copper tubes under JO-159 loading were compared using high-speed scanning photography. The fracture process of the copper tube under JO-159 and TNT loading was obtained using framing photography, and the differences in fracture time, crack propagation direction and fragment shape were compared. The results show that under JO-159 loading, although the fine-grained copper tubes have good ductility, a small number of internal defects initiate obvious isolated growth holes, leading to slightly larger effective expansion displacement of copper tubes than that of the coarse-grained copper tubes, with a smaller relative deviation of the specific kinetic energy between the two kinds of copper tubes than 1%. There are many randomly-distributed holes when the coarse-grained copper tube is broken. With the increase of the explosive intensity, the number of holes increases. Cracks switch from longitudinal propagation mode into complex networked mode and fragments change from strip to fragmented shape. However, the fracture diameters under both conditions reach three times of the initial diameter, which meets the basic requirements of a cylinder test.
Abstract:
Shock consolidation of powders is an effective method for fabrication of the high quality tungsten, and molecular dynamics simulation has unique advantages in modelling the rapid process at atomic-scale. In this work, the shock consolidation of nano tungsten powders at room temperature was studied by molecular dynamics using the embedded atomic potential of tungsten. The morphology of the compressed particles, distribution of particle velocity, P-UP, T-UP, T-P curves and radial distribution function were investigated to analyze the effects of particle velocity and jets on the shock consolidation. The mechanism of consolidation was also proposed at micro-scale. The results showed that the nanoparticles could not be compacted to full density at a relatively low impact velocity (<500 m/s), while a good densification could be achieved at high impact velocity (>1 000 m/s); the high pressure due to the extrusion between particles leads to flow and deformation on the surface of the particle. The voids among the particles were filled by the flowing atoms, leading to densification. Particles were melted during the impacts by adjacent particle and jet, which promotes the sintering between particles.
Abstract:
With the increasing requirements for the protection of military vehicles, the design of impact protection components is facing more and more challenges. In order to provide an efficient and scientific research method, this paper adopts a V-shaped structure, and uses radial basis function neural network approximation model and multi-objective genetic algorithm to optimize the design of a certain type of vehicle protection components. Taking the deformation amount of the protection component and the total mass as the design goal, the sensitivity analysis is used to select the design factor that has a great influence on the protection performance of the protection component. The approximate model of the experimental design sample is constructed by radial basis function neural network, and then multi-objective genetic algorithm is used to numerically optimize the optimal component of the protection component. Finally, through simulation and experimental verification, it is proved that the optimization scheme meets the design requirements. Provide a design idea for the future development of protective components.
Abstract:
In order to investigate the mechanical response and damage mechanisms of Al2O3 ceramics, quasi-static and dynamic compression experiments are carried out on Al2O3 samples with a material test system and split Hopkinson pressure bar, respectively. In-situ optical imaging is adopted to capture the failure process of samples; synchrotron radiation CT and scanning electron microscopy (SEM) are, respectively, used to characterize the size and shape of recovered fragments and the micro fracture modes. Bulk strength data show that the compressive strength of Al2O3 ceramics conforms to a Weibull distribution and increases in a power law with the strain rate. In-situ optical imaging and SEM recovery analysis reveal that there exist obvious differences in crack nucleation and propagation between quasi-static and dynamic loading. Intergranular fracture around initial flaws is more likely to occur under quasi-static loading, macroscopically leading to fewer splitting cracks which tend to propagate along the loading direction and penetrate the sample; while transgranular fracture dominates micro cracking under dynamic loading, and the splitting cracks increases in number and interact with each other to form a large number of bifurcated, secondary cracks during the propagation process, which increases the crack density of sample. This is consistent with the three-dimensional CT characterizations. The mean of sphericity, convexity, elongation index and flatness index of fragments increase linearly with the logarithm of strain rate. The change in failure mode ultimately leads to the significantly enhanced strain rate sensitivity of ceramic materials at high strain rates.
Abstract:
In this paper, an internal central single-cracked disk (ICSCD) specimen was proposed for the study of dynamic fracture initiation toughness of sandstone under blasting loading. We conducted blasting tests on an ICSCD specimen fabricated from a blue sandstone disc (400 mm in diameter) with a crack (60 mm in length), obtained a blasting strain-time curve from the radial strain gauges fixed around the blast hole, determined the fracture initiation time with the circumferential strain gauges placed around the crack tip, and then derived the stress history on the blast hole of the sandstone specimen from the measured strain curve through the Laplace transform. Furthermore, we obtained the numerical solutions using numerical inversion, establishing a numerical model using the finite element software ANSYS, and derived Type I dynamic stress intensity factor curves of the sandstone under blasting loading by the mutual interaction, with the results achieved: (1) the ICSCD specimen can be used to measure the dynamic initiation fracture toughness of rocks; (2) the stress on the blast hole wall can be obtained by the Laplace numerical inversion method; (3) the dynamic initiation fracture toughness of the ICSCD sandstone specimen can be calculated by the experimental-numerical method with an error below 7%.
2020, 40(1): 1-2.  
Read OL PDF (0)
Abstract:
Explosive Safety
Abstract:
The progress in explosive safety studies related to experiment achievements with precise diagnostics and understanding of non-shock initiation of explosive phenomena in recent 20 years is reviewed. Some widespread misconceptions and misleading in non-shock initiation reaction behavior and corresponding process modeling is commented and suggestions for improvement are given. Recent experiments focused on the reaction propagation and violence evolution conducted by the author’s team in recent years are introduced and interpreted in detail as an illustration of the basic mechanism of non-shock initiation reaction. For low porosity explosive, the abnormal reaction behavior is dominated by the surface conductive burning and the convective flow of hot, high pressure gaseous reaction products through confinement slot and cracks in explosive bulk, which should be taken as the basic kinetics during the reaction propagation and reaction violence growth process. The evolution of reaction violence is unstable when the surface combustion is coupled with the dynamic evolution of crack network in explosive, but the utmost violence is usually limited by the mild conductive combustion rate of typical secondary explosive and confinement failure. Especially, the deflagration to detonation transition could hardly come true in low porosity explosive system with confinement of limited strength.
Abstract:
High temperature gaseous products of conductive burning on explosive surface can penetrate into preformed crack inside explosive bulk under high pressure to form so-called convective burning. The high rising gaseous products pressure resulting from the convective burning in turn will create cracks inside the explosive bulk, leading to the formation of new channels for convective reaction and the more reaction surfaces for burning. In this paper, a new experimental method is designed for a pressed HMX-based PBX, in which a highly confined spherical charge is ignited on center point via non-shock initiation. The propagation of such kind of reactive cracks inside is recorded and evaluated with the total reaction violence growth behavior characterized by reaction pressure and confinement wall velocity profile. In the experiment with a transparent window, the early stage evolution of crack inside explosive sphere is invisible and the crack system after the crack break through to the spherical surface shows a 4 fold symmetric crack pattern which is deduced to be related with outer layer confinement conjunction manner. The violence evolution experiences a sustaining low pressure growing rate stage for 100 μs. Then it is observed that a rapid burst pressure in about 10 μs is up to over 1 GPa during the confinement wall movement stage, which gives to a typical explosion outcome with ~20% of bare explosive detonation calculated by air blast over pressure. In the experiment with a 20 mm steel wall, the velocity of the wall has reached 500 m/s at the moment of confinement wall rupture.
Abstract:
The aim of this paper is to deep understand the pressurization behavior in evolution of crack burning, and promote the acknowledge level for transition mechanism of high intensity reaction in projectile fillings under accidental ignition. Based on qualitative analysis for pressure evolution in explosive crack burning, theoretical calculation is carried out for the pressurization process in crack burning of a HMX-based PBX (with a content of 95% for HMX). Simplified flow model for explosive burning products has been set up based on gas dynamic theory. With the hypothesis of one-dimensional isentropic flow, crack pressurization process has been predicted without regard to viscosity and friction resistance. The calculation result is qualitatively accord with experimental result in pressurization stage, providing a theoretical explanation for understanding the pressurization behavior in crack burning.
Abstract:
The burn rate-pressure characteristic of explosive is the intrinsic factor of ammunition safety, which reflects the potential tendency of the development of reaction violence. We conducted the experiment to understand the deflagration behavior of PBX-1 explosive by using the method of burn pressure-burn consumption in a closed bomb. The temporal pressure data and burn front time-of-arrival data were respectively recorded by pressure transducer and microthermocouple, allowing direct calculation of burn rate as a function of pressure. The result shows that the burn rate equation of PBX-1 explosive can be expressed as r = (2.16±0.55) p1.08±0.06 with the pressure exponent n>1, indicating that the burn rate is sensitive to pressure. Over the pressure range 10−100 MPa the burn rate displays exponent dependence on the pressure. In contrast, PBX-1 exhibits erratic burn behaviors with pressures grater than 100 MPa and burn rate rises sharply. The analysis demonstrates that the physical deconsolidation of PBX-1 explosive at high pressure is the main factor, which physically disrupts the sample and results in burn specific surface area increasing over 100 times. PBX-1 explosive has potential tendency of enhancing the reaction violence by convective burning mechanism.
Abstract:
In order to investigate whether the reaction evolution of pressed HMX-based PBXs inside long thick wall steel tube initiated by ignition composition leads to detonation finally or not, a new experiment apparatus was designed based on traditional DDT tube, in which the strength of tube at specific locations is enhanced, and multichannel PDV probes and high speed photography were used to diagnose the expansion process and rupture characteristics of tube wall. Compared with the results initiated by detonator in the same explosives and confinement, the reaction durations of detonation and ignition differed by orders of magnitude; the pressure evolution measured by tube wall velocities, and the propagation process of tube wall movement were significantly different in two reactions. Analysis shows that the convective flow of reaction products along the seam between tube wall and explosives, high temperature and pressure, dominated the reaction evolution of PBX-A initiated by ignition composition under strong confinement, and appeared as laminar burning on explosive surface and structural response of confinement. There is no reaction activated in explosive bulk by the ramp wave caused by upper stream non shock initiation reaction, least of all DDT.
Explosion Physics
Abstract:
This paper is aimed at revealing the couplings of flame instabilities and explosion pressure. By introducing flame wrinkling factor into the smooth flame model, the wrinkled flame model and turbulent flame model are developed to predict explosion pressure evolution. The effects of adiabatic and isothermal compression on explosion pressure prediction are also compared. The results demonstrate that the expanding flame tends to be more unstable under enhancing hydrodynamic instability and the cellular flame will be formed in the constant-volume stage. Since the smooth flame neglects the flame instabilities, the predicted explosion pressure is lower than experimental value. For the smooth flame model, the predicted pressure in the adiabatic condition is higher than that in the isothermal condition. The explosion pressure behavior could be overpredicted significantly using the turbulent flame model due to the fact that the turbulent flame model overestimates the flame wrinkling level. When the wrinkled flame model is considered, the explosion pressure behavior could be reproduced relatively satisfactorily for stoichiometric propane-air mixture and stoichiometric methane-air mixture in V=25.6 m3. When V≤1.25 m3, the experimental explosion pressure is lied within the predicted value using wrinkled flame model and adiabatic smooth flame model.
Impact Dynamics
Abstract:
In this paper, dynamic compression response of metal orthogonal corrugated sandwich structures under impact loading is investigated theoretically and numerically. Considering the effect of strain rate of material, analytical models of dynamic response of metal orthogonal corrugated sandwich structure is developed. Finite element simulation of its dynamic compressive response is carried out. It is shown that there is a good agreement between the results based on the analytical model and finite element simulation. Furthermore, the dynamic compressive response of multi-layer orthogonal corrugated sandwich structure is studied using finite element method. Deformation modes under different impact velocities are obtained and the influence of the number of layers on the dynamic response is analyzed. It is found that the mitigation and energy absorption capacity of the sandwich structures can be effectively enhanced by increasing the number of layers while the number of layers have mild influence after exceeding four.
Abstract:
Solids will be broken into multiple fragments under dynamic tension loadings. The Mott-Grady model based on linear cohesive fracture can predict the lower limits of average fragment size during fragmentation process. However, the damage evolution of ductile materials is diversified. In this paper, the ductile fracture processes influenced by different damage evolutions were studied by numerical simulation. Using ABAQUS/Explicit dynamic finite element, we reproduced the tensile fracture process of ductile metal bar (45 steel) at high strain rates. The effects of linear/nonlinear damage evolutions on ductile fracture process were analyzed. The numerical results show that the damage evolution law has a significant influence on the fragmentation process of ductile metals. As the nonlinear parameter increases, the number of fragments decreases during fragmentation process. The Grady-Kipp formula can still reasonably predict the lower limits of the ductile fragment sizes in a certain range. When the non-linear index α was far greater than zero, there are conspicuous deviations between the numerical experiments and the Grady-Kipp model under the low impact loading. With increasing strain rate, the results by the numerical simulations are in agreement with the ones by the Grady-Kipp theoretical model.
Abstract:
When warheads such as missiles and artillery bombs explode with a certain velocity, such velocity of motion will change the field of blast wave and thus affect the damage power of ammunition. In this paper, numerical simulation of shock wave field of spherical TNT explosion is carried out by using AUTODYN with velocities of 0, 272, 340, 680, 1 020 and 1 700 m/s, respectively. The peak overpressure, specific impulse and positive pressure time of blast wave field are studied quantitatively. The results show that when the azimuth angle is less than 90°, the velocity of the propellant is positively correlated with the shock wave overpressure and specific impulse, and negatively correlated with the positive pressure time; when the azimuth angle is greater than 90°, the velocity of the propellant is negatively correlated with the shock wave overpressure and specific impulse, and positively correlated with the positive pressure time. The peak overpressure presents sinusoidal variation along azimuth. A calculation model of dynamic detonation shock wave overpressure is established by analyzing the peak overpressure data of shock wave. The calculation results of the model are in good agreement with the simulation and experimental results.
Experimental Techniques & Numerical Methods
Abstract:
A simple and stable wavelet method, which is based on adaptive wavelet collocation methods and artificial viscosity techniques, was proposed to compute shock waves. Dynamic multiscale grids generated by wavelet threshold filtering adaptive to the flow field were used. The shock waves can be checked out by the shock locator functions with power formula, which are constructed through using the magnitudes of the wavelet coefficients on the finest level in the density fields. Then, the artificial viscous terms including viscosity and shock locator functions strictly control the magnitudes and distributions of the artificial viscosity according to the gradients in the flow field. A strong and a weak shock tubes were computed, which shows that the method can accurately capture shock fronts and effectively restrain numerical oscillations. By the way, it is easy to manipulate, high of resolution and small of computational costs.
Applied Explosion Mechanics
Abstract:
Aiming at the unevenness of the root bottom and the low power capacity of the explosive in the present stage of smooth blasting, a kind of spiral tube shaped charge was put forward. In order to explore the rock-breaking mechanism of the charge, LS-DYNA numerical simulation and borehole blasting test were used to study the rock-breaking mechanism of the charge. Firstly, the numerical simulation results show that the spiral pipe shaped charge can form a continuous metal jet penetrating the borehole wall, and the borehole wall was penetrated out of the crack in the direction of the vertical borehole. The results show that there are helical perforation cracks in the borehole wall of the residual sample of spiral tube, which confirmed the penetration results of numerical simulation. In addition, the perforation utilization rate and reaming rate were increased by 7.2% and 8.4%, respectively, compared with the normal columnar charge. Finally, this charge was applied to the reclamation area of Zhoushan. The results showed that the average root height of the spiral pipe charge blasting area was 14 cm lower than that of the common charge, and the standard deviation of the root height was 12 cm less than that of the common charge, that is, the cumulative charge saved 14 cm hole depth and charge length and reduced the roughness of 12 cm.The research results are of great value in the application of blasting engineering, which can reduce the construction cost, speed up the construction progress and improve the blasting effect.
Abstract:
Blast-induced traumatic brain injury (b-TBI) is a signature injury in the current military conflicts. However, the relevant mechanism of injury has not been fully elucidated. In this paper, numerical simulation study is carried out to investigate the dynamic response of brain injury mechanics during the blast loading. Firtstly, the 3D numerical head model is established based on magnetic resonance imaging (MRI) of the human head, whose physiological characteristics and detailed structures are included. The numerical model is adopted to simulate the head collision and the results are in good agreement with the experimental data, demonstrating the validity of the numerical model. Based on the coupled Eulerian-Lagrangian (CEL) theory, a fluid-solid coupling model of explosive shock wave-head is developed. The coupled model is used to simulate the situation of head subjected to frontal impacts by explosion shock wave. The dynamic response of the head is analyzed from the pressure distribution of flow field, brain pressure, skull deformation and acceleration. The peak pressure of explosion shock wave increases 3.5 times as much as that of incident wave under fluid-structure interaction, resulting in high-frequency vibration of skull and brain tissue at the site of direct shock. The corresponding vibration frequency is as high as 8 kHz, which is completely different from the dynamic response of brain tissue under head collision. At the same time, the local bending deformation will “propagate” along the skull, affecting the whole skull configuration, which determines the evolution process of brain tissue pressure and injury.
Experimentalinvestigationonprojectileshigh-velocitypenetration intoconcretetarget
HE Xiang, XU Xiang-yun, SUN Gui-juan, SHEN Jun, YANG Jian-chao, JIN Dong-liang
2010, 30(1): 1-6.   doi: 10.11883/1001-1455(2010)01-0001-06
[Abstract](608) PDF(382)
Influenceofignitionenergyondustexplosionbehavior
KUAI Nian-sheng, HUANG Wei-xing, YUAN Jing-jie
2012, 32(4): 432-438.   doi: 10.11883/1001-1455(2012)04-0432-07
[Abstract](548) PDF(309)
Constitutiverelationandfracturemodelof7A04aluminumalloy
ZHANG Wei, XIAO Xin-ke, WEI Gang
2011, 31(1): 81-87.   doi: 10.11883/1001-1455(2011)01-0081-07
[Abstract](631) PDF(309)
Review of the development of Hopkinson pressure bar technique in China
Hu Shi-sheng, Wang Li-li, Song Li, Zhang Lei
2014, 34(6): 641-657.   doi: 10.11883/1001-1455(2014)06-0641-17
[Abstract](1456) PDF(1274)
Explosion characteristics of coal dust in a sealed vessel
GAO Cong, LI Hua, SU Dan, HUANG Wei-Xing
2010, 30(2): 164-168.   doi: 10.11883/1001-1455(2010)02-0164-05
[Abstract](3282) PDF(2359)
Experimentalinvestigationsonbehaviors ofprojectilehigh-speedwaterentry
ZHANG Wei, GUO Zi-tao, XIAO Xin-ke, WANG Cong
2011, 31(6): 579-584.   doi: 10.11883/1001-1455(2011)06-0579-06
[Abstract](647) PDF(242)
Effectoftunnelingblastingonanexistingadjacenttunnel
ZHONG Dong-wang, WU Liang, YU Gang
2010, 30(5): 456-462.   doi: 10.11883/1001-1455(2010)05-0456-07
[Abstract](496) PDF(203)
Acoustic emission experiment of rock failure under coupled static-dynamic load
WANG Qi-Sheng, WAN Guo-Xiang, LI Xi-Bing
2010, 30(3): 247-253.   doi: 10.11883/1001-1455(2010)03-0247-07
[Abstract](3625) PDF(2280)
Asimulation-basedexperimentalstudyonexplosionstresswavepropagation andattenuationincoa
CHU Huai-bao, YANG Xiao-lin, HOU Ai-jun, YU Yong-qiang, LIANG Wei-min
2012, 32(2): 185-189.   doi: 10.11883/1001-1455(2012)02-0185-05
[Abstract](479) PDF(399)
Damage characteristics of sandwich bulkhead under the impact of shock and high-velocity fragments
Hou Hai-liang, Zhang Cheng-liang, Li Mao, Hu Nian-ming, Zhu Xi
2015, 35(1): 116-123.   doi: 10.11883/1001-1455(2015)01-0116-08
[Abstract](713) PDF(541)
Design and impact analysis of a high-g accelerometer
SHI Yun-Bo, ZHU Zheng-Qiang, LIU Xiao-Peng, DU Kang, LIU Jun
2010, 30(3): 329-332.   doi: 10.11883/1001-1455(2010)03-0329-04
[Abstract](4772) PDF(215)
Damage modes of stiffened plates subjected to underwater explosion load
ZHU Xi, MOU Jin-Lei, WANG Heng, ZHANG Zhen-Hua
2010, 30(3): 225-231.   doi: 10.11883/1001-1455(2010)03-0225-07
[Abstract](4343) PDF(124)
Large eddy simulation for the multi-viscosity-fluid and turbulence
BAI Jin-Song, WANG Tao, ZOU Li-Yong, LI Ping
2010, 30(3): 262-268.   doi: 10.11883/1001-1455(2010)03-0262-07
[Abstract](3721) PDF(135)
Dynamic response of foam sandwich plates subjected to impact loading
SONG Yan-Ze, WANG Zhi-Hua, ZHAO Long-Mao, ZHAO Yong-Gang
2010, 30(3): 301-307.   doi: 10.11883/1001-1455(2010)03-0301-07
[Abstract](3842) PDF(209)
On dynamic structural response of an airplane landing onto water
He-Qian, LI Yuan-Sheng, LI Lei, YUE Zhu-Feng
2010, 30(2): 125-130.   doi: 10.11883/1001-1455(2010)02-0125-06
[Abstract](2780) PDF(138)
Characteristics of ultra-high performance cementitious composites under explosion
RONG Zhi-Dan, SUN Wei, ZHANG Yun-Sheng, ZHANG Wen-Hua
2010, 30(3): 232-238.   doi: 10.11883/1001-1455(2010)03-0232-07
[Abstract](3940) PDF(131)
Explosion characteristics of coal dust in a sealed vessel
GAO Cong, LI Hua, SU Dan, HUANG Wei-Xing
2010, 30(2): 164-168.   doi: 10.11883/1001-1455(2010)02-0164-05
[Abstract](3282) PDF(128)
Design and realization of an acceleration measurement system by using Model 1221
ZHU Yi-Chao, GAO Cheng, LI Yan-Xin, CHEN Yong-Guang
2010, 30(3): 333-336.   doi: 10.11883/1001-1455(2010)03-0333-04
[Abstract](3423) PDF(131)
Acoustic emission experiment of rock failure under coupled static-dynamic load
WANG Qi-Sheng, WAN Guo-Xiang, LI Xi-Bing
2010, 30(3): 247-253.   doi: 10.11883/1001-1455(2010)03-0247-07
[Abstract](3625) PDF(125)
A calculation method for supercavity profile about a slender cone-shaped projectile traveling in water at subsonic speed
ZHANG Zhi-Hong, MENG Qing-Chang, GU Jian-Nong, WANG Chong
2010, 30(3): 254-261.   doi: 10.11883/1001-1455(2010)03-0254-08
[Abstract](3587) PDF(117)
Explosion mechanism of carbon powder
LAI Cheng-Feng, DUAN Zi-Hua, ZHANG Yong-Fa, ZHANG Lao-Lao
2010, 30(3): 325-328.   doi: 10.11883/1001-1455(2010)03-0325-04
[Abstract](3544) PDF(133)
ZHANG Ding-Shan, WANG Hao, FENG Guo-Zeng, LIU Bin, GUO Jin-Yan
2010, 30(3): 314-319.   doi: 10.11883/1001-1455(2010)03-0314-06
[Abstract](3357) PDF(143)
Penetration of cylindrical-nose-tip projectiles into concrete targets
SUN Chuan-Jie, LU Yong-Gang, ZHANG Fang-Ju, LI Hui-Min
2010, 30(3): 269-275.   doi: 10.11883/1001-1455(2010)03-0269-07
[Abstract](3751) PDF(113)
Three-dimensional discrete element simulation of hot spots in explosives under shock loading
SHANG Hai-Lin, ZHAO Feng, WANG Wen-Qiang, FU Hua
2010, 30(2): 131-137.   doi: 10.11883/1001-1455(2010)02-0131-07
[Abstract](2862) PDF(133)
Performance of a 60 kJ electric gun
CHEN Lin, DAI Ying-Min, SU Jian-Jun, FENG Shu-Ping, XIE Wei-Ping, WANG Hui, REN Jing, WU Shou-Dong, LI Ye
2010, 30(3): 283-287.   doi: 10.11883/1001-1455(2010)03-0283-05
[Abstract](5115) PDF(139)
Dynamic deformations of 921A steel pure shear hat-shaped specimen in SHPB tests
LI Ji-Cheng, CHEN Xiao-Wei, CHEN Gang
2010, 30(3): 239-246.   doi: 10.11883/1001-1455(2010)03-0239-08
[Abstract](3826) PDF(138)
Prediction of the lower flammability limits of hydrocarbons based on the quantitative structure-property relationship studies
PAN Yong, JIANG Jun-Cheng, WANG Rui
2010, 30(3): 288-294.   doi: 10.11883/1001-1455(2010)03-0288-07
[Abstract](3483) PDF(139)
Application of DCD scheme to computation of two-phase flow interior ballistics for fractured propellant bed
YUAN Lai-Feng, RUI Xiao-Ting, WANG Guo-Ping, CHEN Tao
2010, 30(3): 295-300.   doi: 10.11883/1001-1455(2010)03-0295-06
[Abstract](3282) PDF(138)
Theory analysis on shock-induced chemical reaction of reactive metal
ZHANG Xian-Feng, ZHAO Xiao-Ning, QIAO Liang
2010, 30(2): 145-151.   doi: 10.11883/1001-1455(2010)02-0145-07
[Abstract](3020) PDF(157)
Effects of reinforcement ratio and impact position on anti-penetration properties of reinforced concrete
Lou-Jian-Feng, WANG Zheng, ZHU Jian-Shi, ZHANG Feng-Guo, HONG Tao
2010, 30(2): 178-182.   doi: 10.11883/1001-1455(2010)02-0178-05
[Abstract](2704) PDF(130)
Effect of different explosion or shock seismic inputs on efficiency of a whole vibration-isolating system
DU Jian-Guo, XIE Qing-Liang, FENG Jin-Ji, LI Li-Sha
2010, 30(3): 276-282.   doi: 10.11883/1001-1455(2010)03-0276-07
[Abstract](3428) PDF(104)
Shock wave propagation characteristics in C30 concrete under plate impact loading
WANG Yong-Gang, WANG Li-Li
2010, 30(2): 119-124.   doi: 10.11883/1001-1455(2010)02-0119-06
[Abstract](3121) PDF(111)
Review on research and development of water-entry impact problem
WANG Yong-hu, SHI Xiu-hua
2008, 28(3): 276-282.   doi: 10.11883/1001-1455(2008)03-0276-07
[Abstract](1013) PDF(177)
Pressure desensitization of emulsion explosives sensitized by compound sensitizers
WANG Yin-Jun, LI Yu-Jing, GAN De-Huai
2010, 30(3): 308-313.   doi: 10.11883/1001-1455(2010)03-0308-06
[Abstract](4320) PDF(107)
Effects of plane shock loading on structure of Ti6Al4V alloy
WEN Xia, YANG Shi-Yuan, WANG Jun-Xia, ZHANG Lin, LIU Xiao-Nan
2010, 30(3): 320-324.   doi: 10.11883/1001-1455(2010)03-0320-05
[Abstract](3378) PDF(137)
Blast resistance of large underground rock caverns in hydraulic power stations
ZHAO Bao-You, MA Zhen-Yue, LIANG Bing, XU Wei, XU Xin-Yong
2010, 30(2): 183-190.   doi: 10.11883/1001-1455(2010)02-0183-08
[Abstract](2525) PDF(116)
Kinetics of isothermal phase transition of HMX based on quantitative phase analysis using the Rietveld method
XUE Chao, SUN Jie, SONG Gong-Bao, KANG Bin, XIA Yun-Xia
2010, 30(2): 113-118.   doi: 10.11883/1001-1455(2010)02-0113-06
[Abstract](2885) PDF(139)
Review of the development of Hopkinson pressure bar technique in China
Hu Shi-sheng, Wang Li-li, Song Li, Zhang Lei
2014, 34(6): 641-657.   doi: 10.11883/1001-1455(2014)06-0641-17
[Abstract](1456) PDF(136)
Deflagration characteristics of a preheated CO-air mixture in a duct
ZHANG Liang, WEI Xiao-Lin, YU Li-Xin, ZHANG Yu, LI Teng, LI Bo
2010, 30(2): 191-196.   doi: 10.11883/1001-1455(2010)02-0191-06
[Abstract](2736) PDF(153)
Power capability and parameters of JWL equation of state for RDX-based PBX
Wang Xinying, Wang Shushan, Xu Yuxin, Hu Sai
2016, 36(2): 242-247.   doi: 10.11883/1001-1455(2016)02-0242-06
[Abstract](1828) [FullText HTML](456) PDF(456)
Failure mechanism of single-layer reticulated domes subjected to impact loads
Wang-Duo-Zhi, FAN Feng, ZHI Xu-Dong, SHEN Shi-Zhao
2010, 30(2): 169-177.   doi: 10.11883/1001-1455(2010)02-0169-09
[Abstract](2719) PDF(142)
Experiments and numerical simulations of sympathetic detonation of explosives in shell
WANG Chen, WU Jun-Ying, CHEN Lang, LU Jian-Ying, GUO Xin, WANG Xiao-Feng
2010, 30(2): 152-158.   doi: 10.11883/1001-1455(2010)02-0152-07
[Abstract](3315) PDF(153)
Dynamic response of woven Kevlar/Epoxy composite laminatesunder impact loading
Ma Xiaomin, Li Shiqiang, Li Xin, Wang Zhihua, Wu Guiying
2016, 36(2): 170-176.   doi: 10.11883/1001-1455(2016)02-0170-07
[Abstract](1254) [FullText HTML](529) PDF(529)
FEM analysis of impact experiments with steel plated concrete walls based on ANSYS/LS-DYNA
Zhu Xiu-yun, Pan Rong, Lin Gao, Li Liang
2015, 35(2): 222-228.   doi: 10.11883/1001-1455(2015)02-0222-07
[Abstract](1875) PDF(164)
Multiple elastic-plastic impacts of a simply supported beam struck by a round-nosed mass
LIU Zhong-Hua, YIN Xiao-Chun
2010, 30(2): 138-144.   doi: 10.11883/1001-1455(2010)02-0138-07
[Abstract](2487) PDF(123)
Formationandterminaleffectofanexplosively-formedpenetrator madebyenergeticmaterials
Wan Wen-qian, Yu Dao-qiang, Peng Fei, Wang Wei-ming, Yang Tian-hai
2014, 34(2): 235-240.   doi: 10.11883/1001-1455(2014)02-0235-06
[Abstract](1220) PDF(125)
Deformation and failure of reinforced concrete beams under blast loading
Li Meng-shen, Li Jie, Li Hong, Shi Cun-cheng, Zhang Ning
2015, 35(2): 177-183.   doi: 10.11883/1001-1455(2015)02-0177-07
[Abstract](1140) PDF(117)
Talk about dynamic strength and damage evolution
Lili Wang, Shisheng Hu, Liming Yang, Xinlong Dong, Hui Wang
2017, 37(2): 169-179.   doi: 10.11883/1001-1455(2017)02-0169-11
[Abstract](2306) [FullText HTML](1523) PDF(1523)
Dynamic behavior of concrete under static triaxial loadingusing 3D-Hopkinson bar
Songlin Xu, Pengfei Wang, Jian Zhao, Shisheng Hu
2017, 37(2): 180-185.   doi: 10.11883/1001-1455(2017)02-0180-06
[Abstract](1901) [FullText HTML](1262) PDF(1262)
Dynamic caustic experiment on fracture behaviors of flawed material induced by pre-notched blasting
Yang Renshu, Xu Peng, Yang Liyun, Chen Cheng
2016, 36(2): 145-152.   doi: 10.11883/1001-1455(2016)02-0145-08
[Abstract](1605) [FullText HTML](498) PDF(498)
Correlation between the critical tube diameter and annular interval for detonation wave in high-concentration argon diluted mixtures
Yu Jian-liang, Gao Yuan, Yan Xing-qing, Gao Wei
2015, 35(4): 603-608.   doi: 10.11883/1001-1455(2015)04-0603-06
[Abstract](1059) PDF(144)
Numerical analysis on liquid sloshing in storage container by nonlinear dynamics method
Li Wen-sheng, Zhao You-qing, Jia Shan-po, Wang Kai, Tan Ji-ke
2014, 34(1): 86-92.  
[Abstract](1340) PDF(150)
Sensitivity analysis for impact resistance of steel plate concrete walls based on force vs. time-history analysis
Zhu Xiuyun, Lin Gao, Pan Rong, Lu Yu
2016, 36(5): 670-679.   doi: 10.11883/1001-1455(2016)05-0670-10
[Abstract](1187) [FullText HTML](647) PDF(647)
One-dimensional yield behavior of MDYB-3 polymethyl methacrylate at different strain rates
Deng Xiao-Qiu, Li Zhi-Qiang, Zhou Zhi-Wei, Wang Zhi-Hua, Yao Xiao-Hu
2015, 35(3): 312-319.   doi: 10.11883/1001-1455-(2015)03-0312-08
[Abstract](1151) PDF(114)
Effects of reflected wave on premixed-gas explosion and dynamic response of tube shells
Zhou Ning, Zhang Bingbing, Feng Lei, Geng Ying, Jiang Shuai, Zhang Lu
2016, 36(4): 541-547.   doi: 10.11883/1001-1455(2016)04-0541-07
[Abstract](957) [FullText HTML](508) PDF(508)
One parameter-obtained method for JWL equation of state considered detonation parameters
Nan Yu-xiang, Jiang Jian-wei, Wang Shu-you, Men Jian-bing
2015, 35(2): 157-163.   doi: 10.11883/1001-1455(2015)02-0157-07
[Abstract](1095) PDF(142)
Experimental research on bubble pulse of small scale charge exploded under simulated deep water
Ma Kun, Chu Zhe, Wang Ke-hui, Li Zhi-kang, Zhou Gang
2015, 35(3): 320-325.   doi: 10.11883/1001-1455-(2015)03-0320-06
[Abstract](1162) PDF(150)
Review of pyroshock simulation andresponse prediction methods in spacecraft
Zhao Xin, Ding Jifeng, Han Zengyao, Zou Yuanjie
2016, 36(2): 259-268.   doi: 10.11883/1001-1455(2016)02-0259-10
[Abstract](1454) [FullText HTML](537) PDF(537)
Theoretical studies for calculating the detonation products and properties of explosives
Du Ming-ran, Wang Xu-guang, Guo Zi-ru, Yan Shi-long
2015, 35(4): 449-453.   doi: 10.11883/1001-1455(2015)04-0449-05
[Abstract](1141) PDF(156)
Energy-absorbing structure design and crashworthiness analysis of high-speed trains
Li Song-yan, Zheng Zhi-jun, Yu Ji-lin
2015, 35(2): 164-170.   doi: 10.11883/1001-1455(2015)02-0164-07
[Abstract](1343) PDF(163)
Study on the model of hot-spot ignition based on friction generated heat on the microcrack face
Lou Jian-feng, Zhang Yan-geng, Hong Tao, Zhou Ting-ting, Guo Shao-dong
2015, 35(6): 807-811.   doi: 10.11883/1001-1455(2015)06-0807-05
[Abstract](965) PDF(121)
Actionofexplosionshockwaveonthreekindsofarchitecturalglass
Jiang Qi, Liu Tong, Wang Ru-heng, Pan Ting
2014, 34(2): 229-234.   doi: 10.11883/1001-1455(2014)02-0229-06
[Abstract](1216) PDF(153)
Material key parameters measurement method in the dynamic tensile testing at intermediate strain rates
Bai Chun-yu, Liu Xiao-chuan, Zhou Su-feng, Li Wei-ming, Shu Wan
2015, 35(4): 507-512.   doi: 10.11883/1001-1455(2015)04-0507-06
[Abstract](905) PDF(136)
Experimentalinvestigationonverticalwater-entrycavityofsphere
Ma Qing-peng, He Chun-tao, Wang Cong, Wei Ying-jie, Lu Zhong-lei, Sun Jian
2014, 34(2): 174-180.   doi: 10.11883/1001-1455(2014)02-0174-07
[Abstract](1345) PDF(156)
Constitutive model of transparent aviation polyurethane at high strain rates
Zhang Long-hui, Zhang Xiao-qing, Yao Xiao-hu, Zang Shu-guang
2015, 35(1): 51-56.   doi: 10.11883/1001-1455(2015)01-0051-06
[Abstract](1395) PDF(152)
Numerical analysis of dynamic response and impact resistance of a large-span rock shed in a tunnel under rockfall impact
Wang Shuang, Zhou Xiaojun, Jiang Bo, Zhou Yuefeng
2016, 36(4): 548-556.   doi: 10.11883/1001-1455(2016)04-0548-09
[Abstract](974) [FullText HTML](518) PDF(518)
Application of pulse shaping technique in Hopkinson bar experiments
Guo Chun-huan, Zhou Pei-jun, Lu Zi-chun, Chang Yun-peng, Zou Guang-ping, Jiang Feng-chun
2015, 35(6): 881-887.   doi: 10.11883/1001-1455(2015)06-0881-07
[Abstract](787) PDF(139)
Experiment and numerical simulation on ignition of charge by fragment impact
Sun Bao-ping, Duan Zhuo-ping, Zhang Hai-ying, Liu Yan, Huang Feng-lei
2013, 33(5): 456-462.   doi: 10.11883/1001-1455(2013)05-0456-07
[Abstract](1638) PDF(151)
Experimental study on penetration-resistance characteristics of honeycomb shelter
Wang Qifan, Shi Shaoqing, Wang Zheng, Sun Jianhu, Chu Zhaojun
2016, 36(2): 253-258.   doi: 10.11883/1001-1455(2016)02-0253-06
[Abstract](1191) [FullText HTML](495) PDF(495)
Moleculardynamicssimulationonthermaldecompositionmechanism ofCL-20withdifferentpolymorphs
Zhang Li, Chen Lang, Wang Chen, Wu Jun-ying
2014, 34(2): 188-195.   doi: 10.11883/1001-1455(2014)02-0188-07
[Abstract](1354) PDF(147)
Numericalsimulationondetonatingshelledexplosives byenergeticfragments
Li Xu-feng, Li Xiang-dong, Gu Wen-bin, Li Yu-chun, Qin Ru-ping
2014, 34(2): 202-208.   doi: 10.11883/1001-1455(2014)02-0202-07
[Abstract](1205) PDF(136)
SPH simulation on the behaviors of projectile water entry
Zhou Jie, Xu Shengli
2016, 36(3): 326-332.   doi: 10.11883/1001-1455(2016)03-0326-07
[Abstract](1398) [FullText HTML](597) PDF(597)
Buckling and energy absorption properties of thin-walled corrugated tubes under axial impacting
Hao Wen-qian, Lu Jin-shuai, Huang Rui, Liu Zhi-fang, Wang Zhi-hua
2015, 35(3): 380-385.   doi: 10.11883/1001-1455-(2015)03-0380-06
[Abstract](1128) PDF(143)
Simulation of cook-off for AP/HTPB composition propellant in base bleed unit at different heating rates
Li Wenfeng, Yu Yonggang, Ye Rui, Yang Houwen
2017, 37(1): 46-52.   doi: 10.11883/1001-1455(2017)01-0046-07
[Abstract](920) [FullText HTML](210) PDF(210)
Numerical simulation on shock waves generated by explosive mixture gas from large nuclear blast load generator based on equivalent-energy principles
Zhang Xiu-hua, Zhang Chun-wei, Duan Zhong-dong
2014, 34(1): 80-86.   doi: 10.11883/1001-1455(2014)01-0080-07
[Abstract](1252) PDF(123)
Dynamic analysis of aircraft impacting on concrete structures
Li Xiao-jun, Hou Chun-lin, He Qiu-mei, Mei Ze-hong
2015, 35(2): 215-221.   doi: 10.11883/1001-1455(2015)02-0215-07
[Abstract](1227) PDF(116)
Dynamic buckling of elastic rectangular thin plates subjected to in-plane impact
Mao Liu-wei, Wang An-wen, Deng Lei, Han Da-wei
2014, 34(4): 385-391.   doi: 10.11883/1001-1455(2014)04-0385-07
[Abstract](1235) PDF(106)
Effect of airflow characteristics on flame structure for following lycopodium dust-air mixtures in a long horizontal tube
Gao Wei, Abe Shuntaro, Rong Jian-zhong, Dobashi Ritsu
2015, 35(3): 372-379.   doi: 10.11883/1001-1455-(2015)03-0372-08
[Abstract](1095) PDF(128)
The ballistic performance of Q235 metal plates subjected to impact by hemispherically-nosed projectiles
Deng Yun-fei, Meng Fan-zhu, Li Jian-feng, Wei Gang
2015, 35(3): 386-392.   doi: 10.11883/1001-1455(2015)03-0386-07
[Abstract](1050) PDF(135)
Influence factors of gas explosion venting in linked vessels
Sun Wei, Wang Zhirong, Ma Longsheng, Liu Minghan, Yang Chenjian
2016, 36(4): 457-464.   doi: 10.11883/1001-1455(2016)04-0457-08
[Abstract](963) [FullText HTML](517) PDF(517)
Experimental study on expansion characteristics of twin combustion-gas jets in liquid-filled chambers
Xue Xiao-chun, Yu Yong-gang, Zhang Qi
2013, 33(5): 449-455.   doi: 10.11883/1001-1455(2013)05-0449-07
[Abstract](1690) PDF(117)
Research progress of buildings and structures subjected to aircraft impact
Liu Jingbo, Han Pengfei, Lin Li, Lu Xinzheng, Cen Song
2016, 36(2): 269-278.   doi: 10.11883/1001-1455(2016)02-0269-10
[Abstract](1532) [FullText HTML](573) PDF(573)
Simulation of flyers driven by detonation of copper azide
Jian Guozuo, Zeng Qingxuan, Guo Junfeng, Li Bing, Li Mingyu
2016, 36(2): 248-252.   doi: 10.11883/1001-1455(2016)02-0248-05
[Abstract](1209) [FullText HTML](530) PDF(530)
Initiationandextensionofgas-drivenfractureduringcompoundperforation
2014, 34(3): 307-314.   doi: 10.11883/1001-1455(2014)03-0307-08
[Abstract](1139) PDF(129)
Explosion-driven electromagnetic induction pulse generator
Ben Chi, He Yong, Pan Xuchao, He Yuan, Ling Qi
2016, 36(1): 43-49.   doi: 10.11883/1001-1455(2016)01-0043-07
[Abstract](1072) [FullText HTML](667) PDF(667)
perforation of concrete targets with finite thickness by projectiles deceleration
GE Tao, LIU Bao-Rong, WANG Ming-Yang
2010, 30(2): 159-163.   doi: 10.11883/1001-1455(2010)02-0159-05
[Abstract](2423) PDF(116)
Experiment and numerical simulation on expansion deformation and fracture of cylindrical shell
Ren Guo-wu, Guo Zhao-liang, Zhang Shi-wen, Tang Tie-gang, Jin Shan, Hu Hai-bo
2015, 35(6): 895-900.   doi: 10.11883/1001-1455(2015)06-0895-06
[Abstract](843) PDF(133)
Strain rate and temperature sensitivity and constitutive model of YB-2 of aeronautical acrylic polymer
Shi Fei-fei, Suo Tao, Hou Bing, Li Yu-long
2015, 35(6): 769-776.   doi: 10.11883/1001-1455(2015)06-0769-08
[Abstract](1026) PDF(131)
Non-intrusive polynomial chaos methods and its application in the parameters assessment of explosion product JWL
Wang Rui-li, Liu Quan, Wen Wan-zhi
2015, 35(1): 9-15.   doi: 10.11883/1001-1455(2015)01-0009-07
[Abstract](1442) PDF(134)
Two dimensional simulation for shock wave produced by strong explosion in free air
Yao Cheng-bao, Li Ruo, Tian Zhou, Guo Yong-hui
2015, 35(4): 585-590.   doi: 10.11883/1001-1455(2015)04-0585-06
[Abstract](988) PDF(150)
Study of strain energy based shear model for single lap bolt
Kou Jianfeng, Xu Fei, Feng Wei
2017, 37(1): 10-14.   doi: 10.11883/1001-1455(2017)01-0001-09
[Abstract](1105) [FullText HTML](252) PDF(252)
An analysis of rockburst fracture micromorphology and study of its mechanism
Zhao Kang, Zhao Hong-yu, Jia Qun-yan
2015, 35(6): 913-918.   doi: 10.11883/1001-1455(2015)06-0913-06
[Abstract](933) PDF(133)
Numericalcal culation of early fireball radiation spectrum in strong explosion
Gao Yin-Jun, Yan Kai, Tian Zhou, Liu Feng
2015, 35(3): 289-295.   doi: 10.11883/1001-1455-(2015)03-0289-07
[Abstract](1215) PDF(120)
Experimental study on gas explosion hazard under different temperatures and pressures
Gao Na, Zhang Yansong, Hu Yiting
2016, 36(2): 218-223.   doi: 10.11883/1001-1455(2016)02-0218-06
[Abstract](1445) [FullText HTML](531) PDF(531)
Deformation with damage and temperature-rise of two types of plastic-bonded explosives under uniaxial compression
Li Tao, Fu Hua, Li Kewu, Gu Yan, Liu Cangli
2017, 37(1): 120-125.   doi: 10.11883/1001-1455(2017)01-0120-06
[Abstract](852) [FullText HTML](226) PDF(226)
Numerical simulation on dynamic response of polyurethane/steel sandwich structure under blast loading
Zou Guang-ping, Sun Hang-qi, Chang Zhong-liang, Xiong Hai-lin
2015, 35(6): 907-912.   doi: 10.11883/1001-1455(2015)06-0907-06
[Abstract](883) PDF(149)
A novel auxetic broadside defensive structure for naval ships
Yang De-qing, Ma Tao, Zhang Geng-lin
2015, 35(2): 243-248.   doi: 10.11883/1001-1455(2015)02-0243-06
[Abstract](1405) PDF(133)
Numerical simulation on penetration of concrete target by shaped charge jet with SPH method
Qiang Hongfu, Fan Shujia, Chen Fuzhen, Liu Hu
2016, 36(4): 516-524.   doi: 10.11883/1001-1455(2016)04-0516-09
[Abstract](1137) [FullText HTML](478) PDF(478)
Interface treating methods for the gas-water multi-phase flows
Xu Shuang, Zhao Ning, Wang Chun-wu, Wang Dong-hong
2015, 35(3): 326-334.   doi: 10.11883/1001-1455-(2015)03-0326-09
[Abstract](1101) PDF(133)
Influence of void coalescence on spall evolution of ductile polycrystalline metal under dynamic loading
Zhang Fengguo, Zhou Hongqiang, Hu Xiaomian, Wang Pei, Shao Jianli, Feng Qijing
2016, 36(5): 596-602.   doi: 10.11883/1001-1455(2016)05-0596-07
[Abstract](1095) [FullText HTML](544) PDF(544)
Anti-blast analysis of graded cellular sacrificial cladding
Zhengyu Cai, Yuanyuan Ding, Shilong Wang, Zhijun Zheng, Jilin Yu
2017, 37(3): 396-404.   doi: 10.11883/1001-1455(2017)03-0396-09
[Abstract](1784) [FullText HTML](1450) PDF(1450)
Impact analysis of shock environment from floating shock platform on equipment response
Wang Jun, Yao Xiong-liang, Yang Di
2015, 35(2): 236-242.   doi: 10.11883/1001-1455(2015)02-0236-07
[Abstract](1119) PDF(139)
Simulation on dynamic pressure of premixed methane/air explosion in open-end pipes
Hong Yidu, Lin Baiquan, Zhu Chuanjie
2016, 36(2): 198-209.   doi: 10.11883/1001-1455(2016)02-0198-12
[Abstract](1188) [FullText HTML](535) PDF(535)
Simulation of free surface particle velocity of flyer under the strong detonation drive
Yuan Shuai, Wen Shang-gang, Li Ping, Dong Yu-bin
2015, 35(2): 197-202.   doi: 10.11883/1001-1455(2015)02-0197-06
[Abstract](1235) PDF(141)
A study of vorticity characteristics of shock-flame interaction
Zhu Yue-jin, Dong Gang
2015, 35(6): 839-845.   doi: 10.11883/1001-1455(2015)06-0839-07
[Abstract](914) PDF(128)
Research advances of safety assessment of bridges under blast load
Zhang Yu, Li Guoqiang, Chen Kepeng, Chen Airong
2016, 36(1): 135-144.   doi: 10.11883/1001-1455(2016)01-0135-10
[Abstract](1624) [FullText HTML](797) PDF(797)
Numerical simulation on mechanism of fractured rock burst in deep underground tunnels
Zhao Hong-liang, Zhou You-he
2015, 35(3): 343-349.   doi: 10.11883/1001-1455-(2015)03-0343-07
[Abstract](984) PDF(123)
Application of SPH in stress wave simulation
Sun Xiaowang, Zhang Jie, Wang Xiaojun, Li Yongchi, Zhao Kai
2017, 37(1): 21-26.   doi: 10.11883/1001-1455(2017)01-0010-05
[Abstract](1035) [FullText HTML](216) PDF(216)
Compressive deformation behaviors of beryllium
Xiao Dawu, Qiu Zhicong, Wu Xiangchao, He Lifeng
2016, 36(2): 285-288.   doi: 10.11883/1001-1455(2016)02-0285-04
[Abstract](1224) [FullText HTML](514) PDF(514)
Numerical simulation on pin-point blasting of sloping surface
Huang Yong-hui, Liu Dian-shu, Li Sheng-lin, Li Xiang-long, Wang Jia-lei
2014, 34(4): 495-500.   doi: 10.11883/1001-1455(2014)04-0495-06
[Abstract](1187) PDF(127)