低马赫数下斜爆轰波的结构

刘岩 武丹 王健平

刘岩, 武丹, 王健平. 低马赫数下斜爆轰波的结构[J]. 爆炸与冲击, 2015, 35(2): 203-207. doi: 10.11883/1001-1455(2015)02-0203-05
引用本文: 刘岩, 武丹, 王健平. 低马赫数下斜爆轰波的结构[J]. 爆炸与冲击, 2015, 35(2): 203-207. doi: 10.11883/1001-1455(2015)02-0203-05
Liu Yan, Wu Dan, Wang Jian-ping. Structure of oblique detonation wave at low inflow Mach number[J]. Explosion And Shock Waves, 2015, 35(2): 203-207. doi: 10.11883/1001-1455(2015)02-0203-05
Citation: Liu Yan, Wu Dan, Wang Jian-ping. Structure of oblique detonation wave at low inflow Mach number[J]. Explosion And Shock Waves, 2015, 35(2): 203-207. doi: 10.11883/1001-1455(2015)02-0203-05

低马赫数下斜爆轰波的结构

doi: 10.11883/1001-1455(2015)02-0203-05
详细信息
    作者简介:

    刘岩(1990—), 男, 博士研究生, liuyandeyoux@126.com

  • 中图分类号: O381

Structure of oblique detonation wave at low inflow Mach number

  • 摘要: 利用Euler方程和两步化学反应模型,对低马赫数入流时的驻定斜爆轰波进行了数值模拟,并重点研究了斜爆轰波的驻定过程和结构。数值结果显示,当入流马赫数较低时,即使其本身是附体的,在诱导区后侧的高压区的作用下,斜爆轰波也会从其起始位置向来流方向运动。在这种情况下,斜爆轰波会驻定在靠近斜面前缘的位置,诱导区的长度仅有1 mm左右。通过设置初始条件,让斜爆轰波在斜面前缘附近被触发,则其将一直维持在靠近斜面前缘的位置。
  • 图  1  斜爆轰波计算域及其结构示意图

    Figure  1.  Schematic representation of computational domain and oblique detonation wave configuration

    图  2  当(Ma)0=6.6、θ=26°时斜爆轰波的压力场

    Figure  2.  Pressure field of oblique detonation wave at (Ma)0=6.6, θ=26°

    图  3  斜爆轰波驻定时的压力场

    Figure  3.  Pressure field of stabilized oblique detonation wave

    图  4  诱导区后侧的压力场

    Figure  4.  Pressure contours behind induction region

    图  5  诱导区长度

    Figure  5.  Length of the induction region

    图  6  当(Ma)0=6.2、θ=25°时驻定斜爆轰波诱导区附近的压力场

    Figure  6.  Pressure field in vicinity of induction region of stabilized oblique detonation wave at (Ma)0=6.2, θ=25°

  • [1] Li C, Kailasanath K, Oran E S. Detonation structure behind oblique shocks[J]. Physics of Fluids, 1994, 6(4): 1600-1611. doi: 10.1063/1.868273
    [2] Wang Ai-feng, Zhao Wei, Jiang Zong-lin. The criterion of the existence or inexistence of transverse shock wave at wedge supported oblique detonation wave[J]. Acta Mechanica Sinica, 2011, 27(5): 611-619. doi: 10.1007%2Fs10409-011-0463-7.pdf
    [3] Verreault J, Higgins A J. Initiation of detonation by conical projectiles[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2311-2318. http://www.sciencedirect.com/science/article/pii/S1540748910003706
    [4] Desbordes D, Hamada L, Guerraud C. Supersonic H2-air combustions behind oblique shock waves[J]. Shock Waves, 1995, 4(6): 339-345. doi: 10.1007/BF01413876
    [5] Viguier C, da Silva L F F, Desbordes D et al. Onset of oblique detonation waves: Comparison between experimental and numerical results for hydrogen-air mixtures[J]. Proceedings of the Combustion Institute, 1996, 26(2): 3023-3031. https://www.sciencedirect.com/science/article/pii/S0082078496801469
    [6] Morris C I, Kamel M R, Stouklov I G, et al. PLIF imaging of the supersonic reactive flows around projectiles in an expansion tube[R]. American Institute of Aeronautics and Astronautics, 1996.
    [7] Ghorbanian K, Sterling J D. Influence of formation processes on oblique detonation wave stabilization[J]. Journal of Propulsion and Power, 1996, 12(3): 509-517. doi: 10.2514/3.24064
    [8] Lefebvre M H, Fujiwara T. Numerical modeling of combustion processes induced by a supersonic conical blunt body[J]. Combustion and Flame, 1995, 100(1): 85-93. https://www.sciencedirect.com/science/article/pii/001021809400044S
    [9] da Silva L F F, Deshaies B. Stabilization of an oblique detonation wave by a wedge: A parametric numerical study[J]. Combustion and Flame, 2000, 121(1): 152-166. https://www.sciencedirect.com/science/article/pii/S0010218099001418
    [10] Li C, Kailasanath K, Oran E S. Effects of boundary layers on oblique-detonation structures[R]. American Institute of Aeronautics and Astronautics, 1993.
    [11] Korobeinikov V P, Levin V A, Markov V V, et al. Propagation of blast wave in a combustible gas[J]. Astronautica Acta, 1972, 17(4): 529-537. http://ci.nii.ac.jp/naid/10008003167
    [12] Balsara D S, Shu C W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy[J]. Journal of Computational Physics, 2000, 160(2): 405-452. http://www.sciencedirect.com/science/article/pii/S002199910096443X
    [13] Gui Ming-yue, Fan Bao-chun, Dong Gang. Periodic oscillation and fine structure of wedge-induced oblique detonation waves[J]. Acta Mechanica Sinica, 2011, 27(6): 922-928. doi: 10.1007/s10409-011-0508-y
  • 加载中
图(6)
计量
  • 文章访问数:  3462
  • HTML全文浏览量:  369
  • PDF下载量:  396
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-05
  • 修回日期:  2014-02-17
  • 刊出日期:  2015-03-25

目录

    /

    返回文章
    返回